Sensitivity Enhanced Refractive Index Fiber Sensor Based on Long-Range Surface Plasmon Resonance in SiO<sub>2</sub>-Au-TiO<sub>2</sub> Heterostructure

Long-range surface plasmon resonance (LRSPR), generated from a coupled plasmon polariton in a thin metal slab sandwiched by two dielectrics, has attracted more and more attention due to its merits, such as longer propagation and deeper penetration than conventional single-interface surface plasmon r...

Full description

Bibliographic Details
Main Authors: Wenyi Bu, Zhifang Wu, Perry Ping Shum, Xuguang Shao, Jixiong Pu
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/8/9/379
_version_ 1797517549922942976
author Wenyi Bu
Zhifang Wu
Perry Ping Shum
Xuguang Shao
Jixiong Pu
author_facet Wenyi Bu
Zhifang Wu
Perry Ping Shum
Xuguang Shao
Jixiong Pu
author_sort Wenyi Bu
collection DOAJ
description Long-range surface plasmon resonance (LRSPR), generated from a coupled plasmon polariton in a thin metal slab sandwiched by two dielectrics, has attracted more and more attention due to its merits, such as longer propagation and deeper penetration than conventional single-interface surface plasmon resonance. Many useful applications related to light–medium interaction have been demonstrated based on the LRSPR effect, especially in the sensing area. Here, we propose and demonstrate an LRSPR-based refractive index sensor by using a SiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-Au-TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> heterostructure, in which a D-shaped honeycomb-microstructure optical fiber (MOF) is designed as the silica substrate and then deposited with a gold film and thin-layer titanium dioxide (TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>). By using the full-vector finite-element method (FEM), this heterostructure is numerically investigated and demonstrated to excite LRSPR without a buffer layer, which is usually necessary in previous LRSPR devices. Through comprehensive discussion about the influence of structural parameters on the resonant wavelength, the excitation of the LRSPR in the proposed heterostructure is revealed to be highly related to the effective refractive index of MOF’s fundamental core mode, which is mainly determined by the MOF’s pitch, the thicknesses of the silica web and the planar-layer silica. Moreover, the thin-layer TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> plays an important role in significantly enhancing the resonance and the sensitivity to analyte’s refractive index as well, when it is coated on the top of the Au film rather than between the metal and waveguide. Finally, the proposed LRSPR sensor based on SiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-Au-TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> heterostructure shows an ultra-high wavelength sensitivity of 20,100 nm/RIU and the corresponding minimum resolution is as low as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.98</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> RIU. Thus, the proposed LRSPR device offers considerable potential for sensing applications in biomedical and biochemical areas.
first_indexed 2024-03-10T07:18:05Z
format Article
id doaj.art-297d37a6846a4808b1bea68f68342889
institution Directory Open Access Journal
issn 2304-6732
language English
last_indexed 2024-03-10T07:18:05Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Photonics
spelling doaj.art-297d37a6846a4808b1bea68f683428892023-11-22T14:50:33ZengMDPI AGPhotonics2304-67322021-09-018937910.3390/photonics8090379Sensitivity Enhanced Refractive Index Fiber Sensor Based on Long-Range Surface Plasmon Resonance in SiO<sub>2</sub>-Au-TiO<sub>2</sub> HeterostructureWenyi Bu0Zhifang Wu1Perry Ping Shum2Xuguang Shao3Jixiong Pu4Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, ChinaFujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, ChinaDepartment of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, ChinaSchool of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeFujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, ChinaLong-range surface plasmon resonance (LRSPR), generated from a coupled plasmon polariton in a thin metal slab sandwiched by two dielectrics, has attracted more and more attention due to its merits, such as longer propagation and deeper penetration than conventional single-interface surface plasmon resonance. Many useful applications related to light–medium interaction have been demonstrated based on the LRSPR effect, especially in the sensing area. Here, we propose and demonstrate an LRSPR-based refractive index sensor by using a SiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-Au-TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> heterostructure, in which a D-shaped honeycomb-microstructure optical fiber (MOF) is designed as the silica substrate and then deposited with a gold film and thin-layer titanium dioxide (TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>). By using the full-vector finite-element method (FEM), this heterostructure is numerically investigated and demonstrated to excite LRSPR without a buffer layer, which is usually necessary in previous LRSPR devices. Through comprehensive discussion about the influence of structural parameters on the resonant wavelength, the excitation of the LRSPR in the proposed heterostructure is revealed to be highly related to the effective refractive index of MOF’s fundamental core mode, which is mainly determined by the MOF’s pitch, the thicknesses of the silica web and the planar-layer silica. Moreover, the thin-layer TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> plays an important role in significantly enhancing the resonance and the sensitivity to analyte’s refractive index as well, when it is coated on the top of the Au film rather than between the metal and waveguide. Finally, the proposed LRSPR sensor based on SiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-Au-TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> heterostructure shows an ultra-high wavelength sensitivity of 20,100 nm/RIU and the corresponding minimum resolution is as low as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.98</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> RIU. Thus, the proposed LRSPR device offers considerable potential for sensing applications in biomedical and biochemical areas.https://www.mdpi.com/2304-6732/8/9/379SiO<sub>2</sub>-Au-TiO<sub>2</sub> heterostructurelong-range surface plasmon resonancemicrostructured optical fiberfiber sensor
spellingShingle Wenyi Bu
Zhifang Wu
Perry Ping Shum
Xuguang Shao
Jixiong Pu
Sensitivity Enhanced Refractive Index Fiber Sensor Based on Long-Range Surface Plasmon Resonance in SiO<sub>2</sub>-Au-TiO<sub>2</sub> Heterostructure
Photonics
SiO<sub>2</sub>-Au-TiO<sub>2</sub> heterostructure
long-range surface plasmon resonance
microstructured optical fiber
fiber sensor
title Sensitivity Enhanced Refractive Index Fiber Sensor Based on Long-Range Surface Plasmon Resonance in SiO<sub>2</sub>-Au-TiO<sub>2</sub> Heterostructure
title_full Sensitivity Enhanced Refractive Index Fiber Sensor Based on Long-Range Surface Plasmon Resonance in SiO<sub>2</sub>-Au-TiO<sub>2</sub> Heterostructure
title_fullStr Sensitivity Enhanced Refractive Index Fiber Sensor Based on Long-Range Surface Plasmon Resonance in SiO<sub>2</sub>-Au-TiO<sub>2</sub> Heterostructure
title_full_unstemmed Sensitivity Enhanced Refractive Index Fiber Sensor Based on Long-Range Surface Plasmon Resonance in SiO<sub>2</sub>-Au-TiO<sub>2</sub> Heterostructure
title_short Sensitivity Enhanced Refractive Index Fiber Sensor Based on Long-Range Surface Plasmon Resonance in SiO<sub>2</sub>-Au-TiO<sub>2</sub> Heterostructure
title_sort sensitivity enhanced refractive index fiber sensor based on long range surface plasmon resonance in sio sub 2 sub au tio sub 2 sub heterostructure
topic SiO<sub>2</sub>-Au-TiO<sub>2</sub> heterostructure
long-range surface plasmon resonance
microstructured optical fiber
fiber sensor
url https://www.mdpi.com/2304-6732/8/9/379
work_keys_str_mv AT wenyibu sensitivityenhancedrefractiveindexfibersensorbasedonlongrangesurfaceplasmonresonanceinsiosub2subautiosub2subheterostructure
AT zhifangwu sensitivityenhancedrefractiveindexfibersensorbasedonlongrangesurfaceplasmonresonanceinsiosub2subautiosub2subheterostructure
AT perrypingshum sensitivityenhancedrefractiveindexfibersensorbasedonlongrangesurfaceplasmonresonanceinsiosub2subautiosub2subheterostructure
AT xuguangshao sensitivityenhancedrefractiveindexfibersensorbasedonlongrangesurfaceplasmonresonanceinsiosub2subautiosub2subheterostructure
AT jixiongpu sensitivityenhancedrefractiveindexfibersensorbasedonlongrangesurfaceplasmonresonanceinsiosub2subautiosub2subheterostructure