General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions

This paper is focused on energy decay rates for the viscoelastic wave equation that includes nonlinear time-varying delay, nonlinear damping at the boundary, and acoustic boundary conditions. We derive general decay rate results without requiring the condition <inline-formula><math xmlns=&q...

Full description

Bibliographic Details
Main Authors: Mi Jin Lee, Jum-Ran Kang
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/22/4593
_version_ 1827639398450069504
author Mi Jin Lee
Jum-Ran Kang
author_facet Mi Jin Lee
Jum-Ran Kang
author_sort Mi Jin Lee
collection DOAJ
description This paper is focused on energy decay rates for the viscoelastic wave equation that includes nonlinear time-varying delay, nonlinear damping at the boundary, and acoustic boundary conditions. We derive general decay rate results without requiring the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>2</mn></msub><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and without imposing any restrictive growth assumption on the damping term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>f</mi><mn>1</mn></msub><mo>,</mo></mrow></semantics></math></inline-formula> using the multiplier method and some properties of the convex functions. Here we investigate the relaxation function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ψ</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≤</mo><mo>−</mo><mi>μ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>G</mi><mrow><mo>(</mo><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>G</i> is a convex and increasing function near the origin, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> is a positive nonincreasing function. Moreover, the energy decay rates depend on the functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and <i>G</i>, as well as the function <i>F</i> defined by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mn>0</mn></msub></semantics></math></inline-formula>, which characterizes the growth behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mn>1</mn></msub></semantics></math></inline-formula> at the origin.
first_indexed 2024-03-09T16:37:55Z
format Article
id doaj.art-2995dcfa261548c882edce8d4ad9f5df
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T16:37:55Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-2995dcfa261548c882edce8d4ad9f5df2023-11-24T14:54:08ZengMDPI AGMathematics2227-73902023-11-011122459310.3390/math11224593General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary ConditionsMi Jin Lee0Jum-Ran Kang1Department of Mathematics, Pusan National University, Busan 46241, Republic of KoreaDepartment of Applied Mathematics, Pukyong National University, Busan 48513, Republic of KoreaThis paper is focused on energy decay rates for the viscoelastic wave equation that includes nonlinear time-varying delay, nonlinear damping at the boundary, and acoustic boundary conditions. We derive general decay rate results without requiring the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>2</mn></msub><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and without imposing any restrictive growth assumption on the damping term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>f</mi><mn>1</mn></msub><mo>,</mo></mrow></semantics></math></inline-formula> using the multiplier method and some properties of the convex functions. Here we investigate the relaxation function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ψ</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≤</mo><mo>−</mo><mi>μ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>G</mi><mrow><mo>(</mo><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>G</i> is a convex and increasing function near the origin, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> is a positive nonincreasing function. Moreover, the energy decay rates depend on the functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and <i>G</i>, as well as the function <i>F</i> defined by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mn>0</mn></msub></semantics></math></inline-formula>, which characterizes the growth behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mn>1</mn></msub></semantics></math></inline-formula> at the origin.https://www.mdpi.com/2227-7390/11/22/4593optimal decayviscoelastic wave equationnonlinear time-varying delaynonlinear dampingacoustic boundary conditions
spellingShingle Mi Jin Lee
Jum-Ran Kang
General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions
Mathematics
optimal decay
viscoelastic wave equation
nonlinear time-varying delay
nonlinear damping
acoustic boundary conditions
title General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions
title_full General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions
title_fullStr General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions
title_full_unstemmed General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions
title_short General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions
title_sort general stability for the viscoelastic wave equation with nonlinear time varying delay nonlinear damping and acoustic boundary conditions
topic optimal decay
viscoelastic wave equation
nonlinear time-varying delay
nonlinear damping
acoustic boundary conditions
url https://www.mdpi.com/2227-7390/11/22/4593
work_keys_str_mv AT mijinlee generalstabilityfortheviscoelasticwaveequationwithnonlineartimevaryingdelaynonlineardampingandacousticboundaryconditions
AT jumrankang generalstabilityfortheviscoelasticwaveequationwithnonlineartimevaryingdelaynonlineardampingandacousticboundaryconditions