Precipitation Dynamical Downscaling Over the Great Plains
Abstract Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic do...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Geophysical Union (AGU)
2018-02-01
|
Series: | Journal of Advances in Modeling Earth Systems |
Subjects: | |
Online Access: | https://doi.org/10.1002/2017MS001154 |
_version_ | 1818162623662784512 |
---|---|
author | Xiao‐Ming Hu Ming Xue Renee A. McPherson Elinor Martin Derek H. Rosendahl Lei Qiao |
author_facet | Xiao‐Ming Hu Ming Xue Renee A. McPherson Elinor Martin Derek H. Rosendahl Lei Qiao |
author_sort | Xiao‐Ming Hu |
collection | DOAJ |
description | Abstract Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm‐season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic‐scale circulations are faithfully reproduced while still allowing WRF to develop small‐scale dynamics, thus effectively suppressing the large‐scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980–2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans‐state Oologah watershed is also achieved. |
first_indexed | 2024-12-11T16:36:37Z |
format | Article |
id | doaj.art-29975c47d3e44f499b138b9849a41e4e |
institution | Directory Open Access Journal |
issn | 1942-2466 |
language | English |
last_indexed | 2024-12-11T16:36:37Z |
publishDate | 2018-02-01 |
publisher | American Geophysical Union (AGU) |
record_format | Article |
series | Journal of Advances in Modeling Earth Systems |
spelling | doaj.art-29975c47d3e44f499b138b9849a41e4e2022-12-22T00:58:26ZengAmerican Geophysical Union (AGU)Journal of Advances in Modeling Earth Systems1942-24662018-02-0110242144710.1002/2017MS001154Precipitation Dynamical Downscaling Over the Great PlainsXiao‐Ming Hu0Ming Xue1Renee A. McPherson2Elinor Martin3Derek H. Rosendahl4Lei Qiao5Center for Analysis and Prediction of StormsUniversity of OklahomaNorman Oklahoma USACenter for Analysis and Prediction of StormsUniversity of OklahomaNorman Oklahoma USASouth Central Climate Science CenterUniversity of OklahomaNorman Oklahoma USASchool of MeteorologyUniversity of OklahomaNorman Oklahoma USASouth Central Climate Science CenterUniversity of OklahomaNorman Oklahoma USADepartment of Natural Resource Ecology and ManagementOklahoma State UniversityStillwater Oklahoma USAAbstract Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm‐season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic‐scale circulations are faithfully reproduced while still allowing WRF to develop small‐scale dynamics, thus effectively suppressing the large‐scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980–2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans‐state Oologah watershed is also achieved.https://doi.org/10.1002/2017MS001154dynamic downscalingspectral nudgingStage IV and PRISM precipitation dataDiscrete Cosine Transform (DCT) |
spellingShingle | Xiao‐Ming Hu Ming Xue Renee A. McPherson Elinor Martin Derek H. Rosendahl Lei Qiao Precipitation Dynamical Downscaling Over the Great Plains Journal of Advances in Modeling Earth Systems dynamic downscaling spectral nudging Stage IV and PRISM precipitation data Discrete Cosine Transform (DCT) |
title | Precipitation Dynamical Downscaling Over the Great Plains |
title_full | Precipitation Dynamical Downscaling Over the Great Plains |
title_fullStr | Precipitation Dynamical Downscaling Over the Great Plains |
title_full_unstemmed | Precipitation Dynamical Downscaling Over the Great Plains |
title_short | Precipitation Dynamical Downscaling Over the Great Plains |
title_sort | precipitation dynamical downscaling over the great plains |
topic | dynamic downscaling spectral nudging Stage IV and PRISM precipitation data Discrete Cosine Transform (DCT) |
url | https://doi.org/10.1002/2017MS001154 |
work_keys_str_mv | AT xiaominghu precipitationdynamicaldownscalingoverthegreatplains AT mingxue precipitationdynamicaldownscalingoverthegreatplains AT reneeamcpherson precipitationdynamicaldownscalingoverthegreatplains AT elinormartin precipitationdynamicaldownscalingoverthegreatplains AT derekhrosendahl precipitationdynamicaldownscalingoverthegreatplains AT leiqiao precipitationdynamicaldownscalingoverthegreatplains |