Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests

In this paper, the mechanical properties of the material that define its mechanical behavior are experimentally investigated. All performed experimental tests and analyzes are related to C15E + C steel. The tested material was delivered as cold drawn round bar. It is usually used in mechanical engin...

Full description

Bibliographic Details
Main Authors: Josip Brnic, Marino Brcic, Sanjin Krscanski, Jitai Niu, Sijie Chen, Zeng Gao
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/11/1445
_version_ 1797549364464320512
author Josip Brnic
Marino Brcic
Sanjin Krscanski
Jitai Niu
Sijie Chen
Zeng Gao
author_facet Josip Brnic
Marino Brcic
Sanjin Krscanski
Jitai Niu
Sijie Chen
Zeng Gao
author_sort Josip Brnic
collection DOAJ
description In this paper, the mechanical properties of the material that define its mechanical behavior are experimentally investigated. All performed experimental tests and analyzes are related to C15E + C steel. The tested material was delivered as cold drawn round bar. It is usually used in mechanical engineering for design of low stressed components. Experimentally obtained results relate to the maximum tensile strength, yield strength, creep behavior, and uniaxial fully reversed high cyclic fatigue. Results representing mechanical properties are shown in the form of engineering stress–strain diagrams, while creep behavior of the material at different temperatures and different stress levels is displayed in the form of creep curves. Tests representing uniaxial cyclic fully reversed mechanical fatigue at constant stresses and room temperature in air are shown in the form of fatigue-life (<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mo>−</mo><mi>N</mi></mrow></semantics></math></inline-formula>) diagram. Some of the experimental results obtained are as follows: ultimate tensile strength (<inline-formula><math display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>m</mi><mrow><mo>(</mo><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>/</mo><mn>500</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></mrow></msub><mo>=</mo><mrow><mo>(</mo><mrow><mn>598</mn><mo>/</mo><mn>230</mn></mrow><mo>)</mo></mrow><mrow><mo> </mo><mi>MPa</mi></mrow><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, yield strength (<inline-formula><math display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mn>0.2</mn><mrow><mo>(</mo><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>/</mo><mn>500</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></mrow></msub><mo>=</mo><mrow><mo>(</mo><mrow><mn>580</mn><mo>/</mo><mo> </mo><mn>214</mn><mo> </mo></mrow><mo>)</mo></mrow><mrow><mo> </mo><mi>MPa</mi></mrow><mo> </mo><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, modulus of elasticity <inline-formula><math display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>E</mi><mrow><mrow><mo>(</mo><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>/</mo><mn>500</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></mrow></msub><mo>=</mo><mrow><mo>(</mo><mrow><mn>213</mn><mo>/</mo><mn>106</mn></mrow><mo>)</mo></mrow><mrow><mo> </mo><mi>GPa</mi></mrow></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and fatigue limit (<inline-formula><math display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo> </mo><mi>R</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>250.83</mn><mrow><mo> </mo><mi>MPa</mi></mrow><mo stretchy="false">)</mo><mo>.</mo></mrow></semantics></math></inline-formula> The fatigue tests were performed at frequency of 40 Hz and at room temperature (20 °C) in air, with stress ratio of <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T15:13:39Z
format Article
id doaj.art-2998b32ff0ee49ba80899235081e2208
institution Directory Open Access Journal
issn 2075-4701
language English
last_indexed 2024-03-10T15:13:39Z
publishDate 2020-10-01
publisher MDPI AG
record_format Article
series Metals
spelling doaj.art-2998b32ff0ee49ba80899235081e22082023-11-20T19:03:46ZengMDPI AGMetals2075-47012020-10-011011144510.3390/met10111445Deformation Behavior of C15E + C Steel under Different Uniaxial Stress TestsJosip Brnic0Marino Brcic1Sanjin Krscanski2Jitai Niu3Sijie Chen4Zeng Gao5Department of Engineering Mechanics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaDepartment of Engineering Mechanics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaDepartment of Engineering Mechanics, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, CroatiaSchool of Materials Science and Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454003, ChinaSchool of Materials Science and Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454003, ChinaSchool of Materials Science and Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454003, ChinaIn this paper, the mechanical properties of the material that define its mechanical behavior are experimentally investigated. All performed experimental tests and analyzes are related to C15E + C steel. The tested material was delivered as cold drawn round bar. It is usually used in mechanical engineering for design of low stressed components. Experimentally obtained results relate to the maximum tensile strength, yield strength, creep behavior, and uniaxial fully reversed high cyclic fatigue. Results representing mechanical properties are shown in the form of engineering stress–strain diagrams, while creep behavior of the material at different temperatures and different stress levels is displayed in the form of creep curves. Tests representing uniaxial cyclic fully reversed mechanical fatigue at constant stresses and room temperature in air are shown in the form of fatigue-life (<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mo>−</mo><mi>N</mi></mrow></semantics></math></inline-formula>) diagram. Some of the experimental results obtained are as follows: ultimate tensile strength (<inline-formula><math display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>m</mi><mrow><mo>(</mo><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>/</mo><mn>500</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></mrow></msub><mo>=</mo><mrow><mo>(</mo><mrow><mn>598</mn><mo>/</mo><mn>230</mn></mrow><mo>)</mo></mrow><mrow><mo> </mo><mi>MPa</mi></mrow><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, yield strength (<inline-formula><math display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mn>0.2</mn><mrow><mo>(</mo><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>/</mo><mn>500</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></mrow></msub><mo>=</mo><mrow><mo>(</mo><mrow><mn>580</mn><mo>/</mo><mo> </mo><mn>214</mn><mo> </mo></mrow><mo>)</mo></mrow><mrow><mo> </mo><mi>MPa</mi></mrow><mo> </mo><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, modulus of elasticity <inline-formula><math display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>E</mi><mrow><mrow><mo>(</mo><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>/</mo><mn>500</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></mrow></msub><mo>=</mo><mrow><mo>(</mo><mrow><mn>213</mn><mo>/</mo><mn>106</mn></mrow><mo>)</mo></mrow><mrow><mo> </mo><mi>GPa</mi></mrow></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and fatigue limit (<inline-formula><math display="inline"><semantics><mrow><msub><mi>σ</mi><mrow><mi>f</mi><mrow><mo>(</mo><mrow><mn>20</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo> </mo><mi>R</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>250.83</mn><mrow><mo> </mo><mi>MPa</mi></mrow><mo stretchy="false">)</mo><mo>.</mo></mrow></semantics></math></inline-formula> The fatigue tests were performed at frequency of 40 Hz and at room temperature (20 °C) in air, with stress ratio of <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2075-4701/10/11/1445mechanical propertiesuniaxial creepimpact fracture energyuniaxial high cyclic mechanical fatiguesteel C15E + C (1.1141)
spellingShingle Josip Brnic
Marino Brcic
Sanjin Krscanski
Jitai Niu
Sijie Chen
Zeng Gao
Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests
Metals
mechanical properties
uniaxial creep
impact fracture energy
uniaxial high cyclic mechanical fatigue
steel C15E + C (1.1141)
title Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests
title_full Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests
title_fullStr Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests
title_full_unstemmed Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests
title_short Deformation Behavior of C15E + C Steel under Different Uniaxial Stress Tests
title_sort deformation behavior of c15e c steel under different uniaxial stress tests
topic mechanical properties
uniaxial creep
impact fracture energy
uniaxial high cyclic mechanical fatigue
steel C15E + C (1.1141)
url https://www.mdpi.com/2075-4701/10/11/1445
work_keys_str_mv AT josipbrnic deformationbehaviorofc15ecsteelunderdifferentuniaxialstresstests
AT marinobrcic deformationbehaviorofc15ecsteelunderdifferentuniaxialstresstests
AT sanjinkrscanski deformationbehaviorofc15ecsteelunderdifferentuniaxialstresstests
AT jitainiu deformationbehaviorofc15ecsteelunderdifferentuniaxialstresstests
AT sijiechen deformationbehaviorofc15ecsteelunderdifferentuniaxialstresstests
AT zenggao deformationbehaviorofc15ecsteelunderdifferentuniaxialstresstests