The structural and optical response of the Au nanoparticles embedded in YSZ modified using high-energetic ion irradiation

Gold nanoparticles (Au NPs) were synthesized in single-crystalline yttria-stabilized zirconia (YSZ) using a high-energetic gold ion implantation with the intention of subsequent modification by silicon ion irradiation. (100)-oriented YSZ samples were implanted with 1 MeV Au+ ions at room temperature...

Full description

Bibliographic Details
Main Authors: Mikšová Romana, Cajzl Jakub, Macková Anna
Format: Article
Language:English
Published: EDP Sciences 2022-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2022/05/epjconf_anpc2022_01004.pdf
Description
Summary:Gold nanoparticles (Au NPs) were synthesized in single-crystalline yttria-stabilized zirconia (YSZ) using a high-energetic gold ion implantation with the intention of subsequent modification by silicon ion irradiation. (100)-oriented YSZ samples were implanted with 1 MeV Au+ ions at room temperature and fluences of 1.5×1016 cm−2, 5.0×1016 cm−2 and 7.5×1016 cm−2 and subsequently annealed for 1 h at 1100 °C in air. Gold NPs modification was realized with irradiation by 10 MeV Si3+ with the fluence of 5.0×1014 cm−2. Au NPs distribution and subsequent YSZ structure modification were studied. YSZ samples as-implanted with Au ions, annealed and subsequently irradiated with Si ions were characterized using Rutherford backscattering spectrometry (RBS) and RBS in channelling mode (RBS-C). The RBS spectra show that the implanted Auions concentrate in the YSZ sub-surface layer in the depth of about 50-250 nm and shift to greater depth with increasing ion fluence. The Si3+ ions irradiation slightly increased Zr sub-lattice disorder. Optical absorbance shows an increase of absorption band at 550 nm after Au implantation only for the two highest ion fluences. After annealing and Si irradiation, optical absorbance increased at 530-580 nm with connection to ion implantation fluence of Au+ ions.
ISSN:2100-014X