Characterization of the Effects of Host p53 and Fos on Gallid Alpha Herpesvirus 1 Replication

Treatment options for herpesvirus infections that target the interactions between the virus and the host have been identified as promising. Our previous studies have shown that transcription factors p53 and Fos are essential host determinants of gallid alpha herpesvirus 1 (ILTV) infection. The impac...

Full description

Bibliographic Details
Main Authors: Zheyi Liu, Lu Cui, Xuefeng Li, Li Xu, Yu Zhang, Zongxi Han, Shengwang Liu, Hai Li
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/14/8/1615
Description
Summary:Treatment options for herpesvirus infections that target the interactions between the virus and the host have been identified as promising. Our previous studies have shown that transcription factors p53 and Fos are essential host determinants of gallid alpha herpesvirus 1 (ILTV) infection. The impact of p53 and Fos on ILTV replication has ‘not been fully understood yet. Using the sole ILTV-permissive chicken cell line LMH as a model, we examined the effects of hosts p53 and Fos on all phases of ILTV replication, including viral gene transcription, viral genome replication, and infectious virion generation. We achieved this by manipulating the expression of p53 and Fos in LMH cells. Our results demonstrate that the overexpression of either p53 or Fos can promote viral gene transcription at all stages of the temporal cascade of ILTV gene expression, viral genome replication, and infectious virion production, as assessed through absolute quantitative real-time PCR, ILTV-specific RT-qPCR assays, and TCID<sub>50</sub> assays. These findings are consistent with our previous analyses of the effects of Fos and p53 knockdowns on virus production and also suggest that both p53 and Fos may be dispensable for ILTV replication. Based on the synergistic effect of regulating ILTV, we further found that there is an interaction between p53 and Fos. Interestingly, we found that p53 also has targeted sites upstream of <i>ICP4</i>, and these sites are very close to the Fos sites. In conclusion, our research offers an in-depth understanding of how hosts p53 and Fos affect ILTV replication. Understanding the processes by which p53 and Fos regulate ILTV infection will be improved by this knowledge, potentially paving the way for the development of novel therapeutics targeting virus–host interactions as a means of treating herpesvirus infections.
ISSN:2073-4425