Study on suppressing of stick-slip using dynamic vibration absorber

This study discussed design criteria for suppressing stick-slip using dynamic vibration absorber. First, a simplified analytical model that can quantify the effect of the dynamic vibration absorber on the occurrence and nonoccurrence conditions of stick-slip was proposed. The model comprises of two...

Full description

Bibliographic Details
Main Authors: Satoru MAEGAWA, Fumihiro ITOIGAWA
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2019-10-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/85/879/85_19-00289/_pdf/-char/en
Description
Summary:This study discussed design criteria for suppressing stick-slip using dynamic vibration absorber. First, a simplified analytical model that can quantify the effect of the dynamic vibration absorber on the occurrence and nonoccurrence conditions of stick-slip was proposed. The model comprises of two vibration systems, i.e., the primary vibration and additional mass systems. In the primary vibration system, stick-slip occurs due to the difference of static and kinetic friction acting on a sliding surface between a primary mass and driven rigid plane. In the additional mass system, an additional mass is connected to the primary mass in the primary vibration system by a linear spring and a dashpot. From the numerical simulations using this analytical model, it was verified that the presence of the additional mass is effective in suppressing stick-slip occurring in the primary vibration system. Secondary, based on the previous studies, i.e., the theories of stick-slip and dynamic vibration absorber, the discriminant equation of the boundary conditions for the occurrence and nonoccurrence of stick-slip was analytically derived. Through some numerical simulations, the validity of the discriminant equation proposed was discussed. It was confirmed that the proposed discriminant equation can accurately formulate the design guideline of the dynamic vibration absorber for suppressing stick-slip. Finally, as a conclusion of this study, the basic design strategy of the dynamic vibration absorber for suppressing stick-slip occurring in mechanical systems were discussed.
ISSN:2187-9761