Dual Functions of V/SiO x /AlO y /p++Si Device as Selector and Memory

Abstract This letter presents dual functions including selector and memory switching in a V/SiO x /AlO y /p++Si resistive memory device by simply controlling compliance current limit (CCL). Unidirectional threshold switching is observed after a positive forming with low CCL of 1 μA. The shifts to th...

Full description

Bibliographic Details
Main Authors: Sungjun Kim, Chih-Yang Lin, Min-Hwi Kim, Tae-Hyeon Kim, Hyungjin Kim, Ying-Chen Chen, Yao-Feng Chang, Byung-Gook Park
Format: Article
Language:English
Published: SpringerOpen 2018-08-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-018-2660-9
Description
Summary:Abstract This letter presents dual functions including selector and memory switching in a V/SiO x /AlO y /p++Si resistive memory device by simply controlling compliance current limit (CCL). Unidirectional threshold switching is observed after a positive forming with low CCL of 1 μA. The shifts to the V-electrode side of the oxygen form the VO x layer, where the threshold switching can be explained by the metal-insulation-transition phenomenon. For higher CCL (30 μA) applied to the device, a bipolar memory switching is obtained, which is attributed to formation and rupture of the conducting filament in SiO y layer. 1.5-nm-thick AlO y layer with high thermal conductivity plays an important role in lowering the off-current for memory and threshold switching. Through the temperature dependence, high-energy barrier (0.463 eV) in the LRS is confirmed, which can cause nonlinearity in a low-resistance state. The smaller the CCL, the higher the nonlinearity, which provides a larger array size in the cross-point array. The coexistence of memory and threshold switching in accordance with the CCL provides the flexibility to control the device for its intended use.
ISSN:1931-7573
1556-276X