Summary: | A DC microgrid is an efficient way to combine diverse sources; conventional droop control is unable to achieve both accurate current sharing and required voltage regulation. This paper provides a new adaptive control approach for DC microgrid applications that satisfies both accurate current sharing and appropriate voltage regulation depending on the loading state. As the load increases in parallel, so do the output currents of the distributed generating units, and correct current sharing is necessary under severe load conditions. The suggested control approach raises the equivalent droop gains as the load level increases in parallel and provides accurate current sharing. The droop parameters were checked online and changed using the principal current sharing loops to reduce the variation in load current sharing, and the second loop also transferred the droop lines to eliminate DC microgrid bus voltage fluctuation in the adaptive droop controller, which is different and inventive. The proposed algorithm is tested using a variety of input voltages and load resistances. This work assesses the performance and stability of the suggested method using a linearized model and verifies the results using an acceptable model created in MATLAB/SIMULINK Software Version 9.3 and using Real-Time Simulation Fundamentals and hardware-based experimentation.
|