Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus <em>Carassius</em>

The widely distributed ray-finned fish genus <i>Carassius</i> is very well known due to its unique biological characteristics such as polyploidy, clonality, and/or interspecies hybridization. These biological characteristics have enabled <i>Carassius</i> species to be success...

Full description

Bibliographic Details
Main Authors: Martin Knytl, Nicola Reinaldo Fornaini
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/10/9/2343
_version_ 1797519882596646912
author Martin Knytl
Nicola Reinaldo Fornaini
author_facet Martin Knytl
Nicola Reinaldo Fornaini
author_sort Martin Knytl
collection DOAJ
description The widely distributed ray-finned fish genus <i>Carassius</i> is very well known due to its unique biological characteristics such as polyploidy, clonality, and/or interspecies hybridization. These biological characteristics have enabled <i>Carassius</i> species to be successfully widespread over relatively short period of evolutionary time. Therefore, this fish model deserves to be the center of attention in the research field. Some studies have already described the <i>Carassius</i> karyotype, but results are inconsistent in the number of morphological categories for individual chromosomes. We investigated three focal species: <i>Carassius auratus</i>, <i>C. carassius</i> and <i>C. gibelio</i> with the aim to describe their standardized diploid karyotypes, and to study their evolutionary relationships using cytogenetic tools. We measured length (<inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>+</mo><mi>p</mi></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mi>e</mi><mi>n</mi><mi>g</mi><mi>t</mi><mi>h</mi></mrow></semantics></math></inline-formula>) of each chromosome and calculated centromeric index (<i>i</i> value). We found: (i) The relationship between <inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>+</mo><mi>p</mi></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mi>e</mi><mi>n</mi><mi>g</mi><mi>t</mi><mi>h</mi></mrow></semantics></math></inline-formula> and <i>i</i> value showed higher similarity of <i>C. auratus</i> and <i>C. carassius</i>. (ii) The variability of <i>i</i> value within each chromosome expressed by means of the first quartile (<inline-formula><math display="inline"><semantics><msub><mi>Q</mi><mn>1</mn></msub></semantics></math></inline-formula>) up to the third quartile (<inline-formula><math display="inline"><semantics><msub><mi>Q</mi><mn>3</mn></msub></semantics></math></inline-formula>) showed higher similarity of <i>C. carassius</i> and <i>C. gibelio</i>. (iii) The fluorescent in situ hybridization (FISH) analysis revealed higher similarity of <i>C. auratus</i> and <i>C. gibelio</i>. (iv) Standardized karyotype formula described using <inline-formula><math display="inline"><semantics><mrow><mi>m</mi><mi>e</mi><mi>d</mi><mi>i</mi><mi>a</mi><mi>n</mi></mrow></semantics></math></inline-formula> value (<inline-formula><math display="inline"><semantics><msub><mi>Q</mi><mn>2</mn></msub></semantics></math></inline-formula>) showed differentiation among all investigated species: <i>C. auratus</i> had 24 metacentric (<i>m</i>), 40 submetacentric (<inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>m</mi></mrow></semantics></math></inline-formula>), 2 subtelocentric (<inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>t</mi></mrow></semantics></math></inline-formula>), 2 acrocentric (<i>a</i>) and 32 telocentric (<i>T</i>) chromosomes (<inline-formula><math display="inline"><semantics><mrow><mn>24</mn><mi>m</mi><mo>+</mo><mn>40</mn><mi>s</mi><mi>m</mi><mo>+</mo><mn>2</mn><mi>s</mi><mi>t</mi><mo>+</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>32</mn><mi>T</mi></mrow></semantics></math></inline-formula>); <i>C. carassius</i>: <inline-formula><math display="inline"><semantics><mrow><mn>16</mn><mi>m</mi><mo>+</mo><mn>34</mn><mi>s</mi><mi>m</mi><mo>+</mo><mn>8</mn><mi>s</mi><mi>t</mi><mo>+</mo><mn>42</mn><mi>T</mi></mrow></semantics></math></inline-formula>; and <i>C. gibelio</i>: <inline-formula><math display="inline"><semantics><mrow><mn>16</mn><mi>m</mi><mo>+</mo><mn>22</mn><mi>s</mi><mi>m</mi><mo>+</mo><mn>10</mn><mi>s</mi><mi>t</mi><mo>+</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>50</mn><mi>T</mi></mrow></semantics></math></inline-formula>. (v) We developed R scripts applicable for the description of standardized karyotype for any other species. The diverse results indicated unprecedented complex genomic and chromosomal architecture in the genus <i>Carassius</i> probably influenced by its unique biological characteristics which make the study of evolutionary relationships more difficult than it has been originally postulated.
first_indexed 2024-03-10T07:49:05Z
format Article
id doaj.art-29bd69e1ca3c4a13a048b1bfe84c36aa
institution Directory Open Access Journal
issn 2073-4409
language English
last_indexed 2024-03-10T07:49:05Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Cells
spelling doaj.art-29bd69e1ca3c4a13a048b1bfe84c36aa2023-11-22T12:24:36ZengMDPI AGCells2073-44092021-09-01109234310.3390/cells10092343Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus <em>Carassius</em>Martin Knytl0Nicola Reinaldo Fornaini1Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech RepublicDepartment of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech RepublicThe widely distributed ray-finned fish genus <i>Carassius</i> is very well known due to its unique biological characteristics such as polyploidy, clonality, and/or interspecies hybridization. These biological characteristics have enabled <i>Carassius</i> species to be successfully widespread over relatively short period of evolutionary time. Therefore, this fish model deserves to be the center of attention in the research field. Some studies have already described the <i>Carassius</i> karyotype, but results are inconsistent in the number of morphological categories for individual chromosomes. We investigated three focal species: <i>Carassius auratus</i>, <i>C. carassius</i> and <i>C. gibelio</i> with the aim to describe their standardized diploid karyotypes, and to study their evolutionary relationships using cytogenetic tools. We measured length (<inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>+</mo><mi>p</mi></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mi>e</mi><mi>n</mi><mi>g</mi><mi>t</mi><mi>h</mi></mrow></semantics></math></inline-formula>) of each chromosome and calculated centromeric index (<i>i</i> value). We found: (i) The relationship between <inline-formula><math display="inline"><semantics><mrow><mi>q</mi><mo>+</mo><mi>p</mi></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mi>e</mi><mi>n</mi><mi>g</mi><mi>t</mi><mi>h</mi></mrow></semantics></math></inline-formula> and <i>i</i> value showed higher similarity of <i>C. auratus</i> and <i>C. carassius</i>. (ii) The variability of <i>i</i> value within each chromosome expressed by means of the first quartile (<inline-formula><math display="inline"><semantics><msub><mi>Q</mi><mn>1</mn></msub></semantics></math></inline-formula>) up to the third quartile (<inline-formula><math display="inline"><semantics><msub><mi>Q</mi><mn>3</mn></msub></semantics></math></inline-formula>) showed higher similarity of <i>C. carassius</i> and <i>C. gibelio</i>. (iii) The fluorescent in situ hybridization (FISH) analysis revealed higher similarity of <i>C. auratus</i> and <i>C. gibelio</i>. (iv) Standardized karyotype formula described using <inline-formula><math display="inline"><semantics><mrow><mi>m</mi><mi>e</mi><mi>d</mi><mi>i</mi><mi>a</mi><mi>n</mi></mrow></semantics></math></inline-formula> value (<inline-formula><math display="inline"><semantics><msub><mi>Q</mi><mn>2</mn></msub></semantics></math></inline-formula>) showed differentiation among all investigated species: <i>C. auratus</i> had 24 metacentric (<i>m</i>), 40 submetacentric (<inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>m</mi></mrow></semantics></math></inline-formula>), 2 subtelocentric (<inline-formula><math display="inline"><semantics><mrow><mi>s</mi><mi>t</mi></mrow></semantics></math></inline-formula>), 2 acrocentric (<i>a</i>) and 32 telocentric (<i>T</i>) chromosomes (<inline-formula><math display="inline"><semantics><mrow><mn>24</mn><mi>m</mi><mo>+</mo><mn>40</mn><mi>s</mi><mi>m</mi><mo>+</mo><mn>2</mn><mi>s</mi><mi>t</mi><mo>+</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>32</mn><mi>T</mi></mrow></semantics></math></inline-formula>); <i>C. carassius</i>: <inline-formula><math display="inline"><semantics><mrow><mn>16</mn><mi>m</mi><mo>+</mo><mn>34</mn><mi>s</mi><mi>m</mi><mo>+</mo><mn>8</mn><mi>s</mi><mi>t</mi><mo>+</mo><mn>42</mn><mi>T</mi></mrow></semantics></math></inline-formula>; and <i>C. gibelio</i>: <inline-formula><math display="inline"><semantics><mrow><mn>16</mn><mi>m</mi><mo>+</mo><mn>22</mn><mi>s</mi><mi>m</mi><mo>+</mo><mn>10</mn><mi>s</mi><mi>t</mi><mo>+</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>50</mn><mi>T</mi></mrow></semantics></math></inline-formula>. (v) We developed R scripts applicable for the description of standardized karyotype for any other species. The diverse results indicated unprecedented complex genomic and chromosomal architecture in the genus <i>Carassius</i> probably influenced by its unique biological characteristics which make the study of evolutionary relationships more difficult than it has been originally postulated.https://www.mdpi.com/2073-4409/10/9/2343chromosomekaryogramin situ hybridization<i>i</i> value<i>q</i>/<i>p</i> arm ratio<i>Carassius auratus</i>
spellingShingle Martin Knytl
Nicola Reinaldo Fornaini
Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus <em>Carassius</em>
Cells
chromosome
karyogram
in situ hybridization
<i>i</i> value
<i>q</i>/<i>p</i> arm ratio
<i>Carassius auratus</i>
title Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus <em>Carassius</em>
title_full Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus <em>Carassius</em>
title_fullStr Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus <em>Carassius</em>
title_full_unstemmed Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus <em>Carassius</em>
title_short Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus <em>Carassius</em>
title_sort measurement of chromosomal arms and fish reveal complex genome architecture and standardized karyotype of model fish genus em carassius em
topic chromosome
karyogram
in situ hybridization
<i>i</i> value
<i>q</i>/<i>p</i> arm ratio
<i>Carassius auratus</i>
url https://www.mdpi.com/2073-4409/10/9/2343
work_keys_str_mv AT martinknytl measurementofchromosomalarmsandfishrevealcomplexgenomearchitectureandstandardizedkaryotypeofmodelfishgenusemcarassiusem
AT nicolareinaldofornaini measurementofchromosomalarmsandfishrevealcomplexgenomearchitectureandstandardizedkaryotypeofmodelfishgenusemcarassiusem