New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
<p>The effect that sea ice topography has on the momentum transfer between ice and atmosphere is not fully quantified due to the vast extent of the Arctic and limitations of current measurement techniques. Here we present a method to estimate pan-Arctic momentum transfer via a parameterization...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-09-01
|
Series: | The Cryosphere |
Online Access: | https://tc.copernicus.org/articles/17/4103/2023/tc-17-4103-2023.pdf |
_version_ | 1797679143137050624 |
---|---|
author | A. Mchedlishvili C. Lüpkes A. Petty A. Petty M. Tsamados G. Spreen |
author_facet | A. Mchedlishvili C. Lüpkes A. Petty A. Petty M. Tsamados G. Spreen |
author_sort | A. Mchedlishvili |
collection | DOAJ |
description | <p>The effect that sea ice topography has on the momentum transfer between ice and atmosphere is not fully quantified due to the vast extent of the Arctic and limitations of current measurement techniques. Here we present a method to estimate pan-Arctic momentum transfer via a parameterization that links sea ice–atmosphere form drag coefficients with surface feature height and spacing. We measure these sea ice surface feature parameters using the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). Though ICESat-2 is unable to resolve as well as airborne surveys, it has a higher along-track spatial resolution than other contemporary altimeter satellites. As some narrow obstacles are effectively smoothed out by the ICESat-2 ATL07 spatial resolution, we use near-coincident high-resolution Airborne Topographic Mapper (ATM) elevation data from NASA's Operation IceBridge (OIB) mission to scale up the regional ICESat-2 drag estimates. By also incorporating drag due to open water, floe edges and sea ice skin drag, we produced a time series of average total pan-Arctic neutral atmospheric drag coefficient estimates from November 2018 to May 2022. Here we have observed its temporal evolution to be unique and not directly tied to sea ice extent. By also mapping 3-month aggregates for the years 2019, 2020 and 2021 for better regional analysis, we found the thick multiyear ice area directly north of the Canadian Archipelago and Greenland to be consistently above <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2.0</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5e5ce4c8526479d3b8b800a7ecedd868"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4103-2023-ie00001.svg" width="51pt" height="14pt" src="tc-17-4103-2023-ie00001.png"/></svg:svg></span></span>, while most of the multiyear ice portion of the Arctic is typically around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">1.5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="86ac5f6c8f7b226cd2c26f0200803e39"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4103-2023-ie00002.svg" width="61pt" height="14pt" src="tc-17-4103-2023-ie00002.png"/></svg:svg></span></span>.</p> |
first_indexed | 2024-03-11T23:10:12Z |
format | Article |
id | doaj.art-29c08541577e415fb86712890c959a30 |
institution | Directory Open Access Journal |
issn | 1994-0416 1994-0424 |
language | English |
last_indexed | 2024-03-11T23:10:12Z |
publishDate | 2023-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | The Cryosphere |
spelling | doaj.art-29c08541577e415fb86712890c959a302023-09-21T10:08:13ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242023-09-01174103413110.5194/tc-17-4103-2023New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation dataA. Mchedlishvili0C. Lüpkes1A. Petty2A. Petty3M. Tsamados4G. Spreen5Institute of Environmental Physics, University of Bremen, Bremen, GermanyAlfred Wegener Institute for Polar and Marine Research, Bremerhaven, GermanyGoddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD, USAEarth System Science Interdisciplinary Center (ESSIC) of the University of Maryland, University of Maryland, College Park, MD, USADepartment of Earth Sciences, University College London, London, UKInstitute of Environmental Physics, University of Bremen, Bremen, Germany<p>The effect that sea ice topography has on the momentum transfer between ice and atmosphere is not fully quantified due to the vast extent of the Arctic and limitations of current measurement techniques. Here we present a method to estimate pan-Arctic momentum transfer via a parameterization that links sea ice–atmosphere form drag coefficients with surface feature height and spacing. We measure these sea ice surface feature parameters using the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). Though ICESat-2 is unable to resolve as well as airborne surveys, it has a higher along-track spatial resolution than other contemporary altimeter satellites. As some narrow obstacles are effectively smoothed out by the ICESat-2 ATL07 spatial resolution, we use near-coincident high-resolution Airborne Topographic Mapper (ATM) elevation data from NASA's Operation IceBridge (OIB) mission to scale up the regional ICESat-2 drag estimates. By also incorporating drag due to open water, floe edges and sea ice skin drag, we produced a time series of average total pan-Arctic neutral atmospheric drag coefficient estimates from November 2018 to May 2022. Here we have observed its temporal evolution to be unique and not directly tied to sea ice extent. By also mapping 3-month aggregates for the years 2019, 2020 and 2021 for better regional analysis, we found the thick multiyear ice area directly north of the Canadian Archipelago and Greenland to be consistently above <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2.0</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5e5ce4c8526479d3b8b800a7ecedd868"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4103-2023-ie00001.svg" width="51pt" height="14pt" src="tc-17-4103-2023-ie00001.png"/></svg:svg></span></span>, while most of the multiyear ice portion of the Arctic is typically around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">1.5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="86ac5f6c8f7b226cd2c26f0200803e39"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-17-4103-2023-ie00002.svg" width="61pt" height="14pt" src="tc-17-4103-2023-ie00002.png"/></svg:svg></span></span>.</p>https://tc.copernicus.org/articles/17/4103/2023/tc-17-4103-2023.pdf |
spellingShingle | A. Mchedlishvili C. Lüpkes A. Petty A. Petty M. Tsamados G. Spreen New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data The Cryosphere |
title | New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data |
title_full | New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data |
title_fullStr | New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data |
title_full_unstemmed | New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data |
title_short | New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data |
title_sort | new estimates of pan arctic sea ice atmosphere neutral drag coefficients from icesat 2 elevation data |
url | https://tc.copernicus.org/articles/17/4103/2023/tc-17-4103-2023.pdf |
work_keys_str_mv | AT amchedlishvili newestimatesofpanarcticseaiceatmosphereneutraldragcoefficientsfromicesat2elevationdata AT clupkes newestimatesofpanarcticseaiceatmosphereneutraldragcoefficientsfromicesat2elevationdata AT apetty newestimatesofpanarcticseaiceatmosphereneutraldragcoefficientsfromicesat2elevationdata AT apetty newestimatesofpanarcticseaiceatmosphereneutraldragcoefficientsfromicesat2elevationdata AT mtsamados newestimatesofpanarcticseaiceatmosphereneutraldragcoefficientsfromicesat2elevationdata AT gspreen newestimatesofpanarcticseaiceatmosphereneutraldragcoefficientsfromicesat2elevationdata |