_version_ 1797660763580530688
author Alfred Schreiber
author_facet Alfred Schreiber
author_sort Alfred Schreiber
collection DOAJ
first_indexed 2024-03-11T18:34:42Z
format Article
id doaj.art-29c168ee9d9849068ca73e7bf4b778dd
institution Directory Open Access Journal
issn 2710-2335
language English
last_indexed 2024-03-11T18:34:42Z
publishDate 2023-10-01
publisher University of Haifa, Department of Mathematics
record_format Article
series Enumerative Combinatorics and Applications
spelling doaj.art-29c168ee9d9849068ca73e7bf4b778dd2023-10-13T04:08:44ZengUniversity of Haifa, Department of MathematicsEnumerative Combinatorics and Applications2710-23352023-10-0142Article #S2R1010.54550/ECA2024V4S2R10On the formal power series of involutory functionsAlfred Schreiber0Europa-Universitat Flensburghttps://ecajournal.haifa.ac.il/Volume2024/ECA2024_S2A10.pdfbell polynomialsfa\'a di bruno’s formulaformal power serieshigher derivativesinvolutory functionlah numberslah polynomialsstirling numbersstirling polynomials
spellingShingle Alfred Schreiber
On the formal power series of involutory functions
Enumerative Combinatorics and Applications
bell polynomials
fa\'a di bruno’s formula
formal power series
higher derivatives
involutory function
lah numbers
lah polynomials
stirling numbers
stirling polynomials
title On the formal power series of involutory functions
title_full On the formal power series of involutory functions
title_fullStr On the formal power series of involutory functions
title_full_unstemmed On the formal power series of involutory functions
title_short On the formal power series of involutory functions
title_sort on the formal power series of involutory functions
topic bell polynomials
fa\'a di bruno’s formula
formal power series
higher derivatives
involutory function
lah numbers
lah polynomials
stirling numbers
stirling polynomials
url https://ecajournal.haifa.ac.il/Volume2024/ECA2024_S2A10.pdf
work_keys_str_mv AT alfredschreiber ontheformalpowerseriesofinvolutoryfunctions