Consistency of Decision in Finite and Numerable Multinomial Models

The multinomial distribution is often used in modeling categorical data because it describes the probability of a random observation being assigned to one of several mutually exclusive categories. Given a finite or numerable multinomial model <inline-formula><math xmlns="http://www.w3....

Full description

Bibliographic Details
Main Authors: Isaac Akoto, João T. Mexia
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/11/2434
_version_ 1827739411546112000
author Isaac Akoto
João T. Mexia
author_facet Isaac Akoto
João T. Mexia
author_sort Isaac Akoto
collection DOAJ
description The multinomial distribution is often used in modeling categorical data because it describes the probability of a random observation being assigned to one of several mutually exclusive categories. Given a finite or numerable multinomial model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mfenced separators="" open="(" close=")"><mspace width="3.33333pt"></mspace><mo>|</mo><mi>n</mi><mo>,</mo><mi mathvariant="bold-italic">p</mi></mfenced></mrow></semantics></math></inline-formula> whose decision is indexed by a parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> and having a cost <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mfenced separators="" open="(" close=")"><mi mathvariant="bold-italic">θ</mi><mo>,</mo><mi mathvariant="bold-italic">p</mi></mfenced></mrow></semantics></math></inline-formula> depending on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> and on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">p</mi></semantics></math></inline-formula>, we show that, under general conditions, the probability of taking the least cost decision tends to 1 when <i>n</i> tends to <i>∞</i>, i.e., we showed that the cost decision is consistent, representing a Statistical Decision Theory approach to the concept of consistency, which is not much considered in the literature. Thus, under these conditions, we have consistency in the decision making. The key result is that the estimator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="bold-italic">p</mi><mo stretchy="false">˜</mo></mover><mi>n</mi></msub></semantics></math></inline-formula> with components <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo stretchy="false">˜</mo></mover><mrow><mi>n</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>n</mi><mi>i</mi></msub><mi>n</mi></mfrac></mstyle><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="4pt"></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>n</mi><mi>i</mi></msub></semantics></math></inline-formula> is the number of times we obtain the <i>i</i>th result when we have a sample of size <i>n</i>, is a consistent estimator of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">p</mi></semantics></math></inline-formula>. This result holds both for finite and numerable models. By this result, we were able to incorporate a more general form for consistency for the cost function of a multinomial model.
first_indexed 2024-03-11T03:02:24Z
format Article
id doaj.art-29c777c83a184f7a873152e807c1fb31
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T03:02:24Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-29c777c83a184f7a873152e807c1fb312023-11-18T08:11:58ZengMDPI AGMathematics2227-73902023-05-011111243410.3390/math11112434Consistency of Decision in Finite and Numerable Multinomial ModelsIsaac Akoto0João T. Mexia1Center of Mathematics and Its Applications, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, PortugalCenter of Mathematics and Its Applications, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, PortugalThe multinomial distribution is often used in modeling categorical data because it describes the probability of a random observation being assigned to one of several mutually exclusive categories. Given a finite or numerable multinomial model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">M</mi><mfenced separators="" open="(" close=")"><mspace width="3.33333pt"></mspace><mo>|</mo><mi>n</mi><mo>,</mo><mi mathvariant="bold-italic">p</mi></mfenced></mrow></semantics></math></inline-formula> whose decision is indexed by a parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> and having a cost <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mfenced separators="" open="(" close=")"><mi mathvariant="bold-italic">θ</mi><mo>,</mo><mi mathvariant="bold-italic">p</mi></mfenced></mrow></semantics></math></inline-formula> depending on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> and on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">p</mi></semantics></math></inline-formula>, we show that, under general conditions, the probability of taking the least cost decision tends to 1 when <i>n</i> tends to <i>∞</i>, i.e., we showed that the cost decision is consistent, representing a Statistical Decision Theory approach to the concept of consistency, which is not much considered in the literature. Thus, under these conditions, we have consistency in the decision making. The key result is that the estimator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi mathvariant="bold-italic">p</mi><mo stretchy="false">˜</mo></mover><mi>n</mi></msub></semantics></math></inline-formula> with components <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo stretchy="false">˜</mo></mover><mrow><mi>n</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>n</mi><mi>i</mi></msub><mi>n</mi></mfrac></mstyle><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="4pt"></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>⋯</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>n</mi><mi>i</mi></msub></semantics></math></inline-formula> is the number of times we obtain the <i>i</i>th result when we have a sample of size <i>n</i>, is a consistent estimator of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">p</mi></semantics></math></inline-formula>. This result holds both for finite and numerable models. By this result, we were able to incorporate a more general form for consistency for the cost function of a multinomial model.https://www.mdpi.com/2227-7390/11/11/2434stochastic convergencedecision theoryestimators
spellingShingle Isaac Akoto
João T. Mexia
Consistency of Decision in Finite and Numerable Multinomial Models
Mathematics
stochastic convergence
decision theory
estimators
title Consistency of Decision in Finite and Numerable Multinomial Models
title_full Consistency of Decision in Finite and Numerable Multinomial Models
title_fullStr Consistency of Decision in Finite and Numerable Multinomial Models
title_full_unstemmed Consistency of Decision in Finite and Numerable Multinomial Models
title_short Consistency of Decision in Finite and Numerable Multinomial Models
title_sort consistency of decision in finite and numerable multinomial models
topic stochastic convergence
decision theory
estimators
url https://www.mdpi.com/2227-7390/11/11/2434
work_keys_str_mv AT isaacakoto consistencyofdecisioninfiniteandnumerablemultinomialmodels
AT joaotmexia consistencyofdecisioninfiniteandnumerablemultinomialmodels