Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy
Sensory dysfunction is prevalent in cerebral palsy (CP). Evidence suggests that sensory deficits can contribute to manual ability impairments in children with CP, yet it is still unclear how they contribute to balance and motor performance. Therefore, the objective of this study was to investigate t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-02-01
|
Series: | Frontiers in Human Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fnhum.2020.00045/full |
_version_ | 1818211128595972096 |
---|---|
author | Anastasia Zarkou Samuel C. K. Lee Samuel C. K. Lee Laura A. Prosser John J. Jeka |
author_facet | Anastasia Zarkou Samuel C. K. Lee Samuel C. K. Lee Laura A. Prosser John J. Jeka |
author_sort | Anastasia Zarkou |
collection | DOAJ |
description | Sensory dysfunction is prevalent in cerebral palsy (CP). Evidence suggests that sensory deficits can contribute to manual ability impairments in children with CP, yet it is still unclear how they contribute to balance and motor performance. Therefore, the objective of this study was to investigate the relationship between lower extremity (LE) somatosensation and functional performance in children with CP. Ten participants with spastic diplegia (Gross Motor Function Classification Scale: I-III) and who were able to stand independently completed the study. Threshold of light touch pressure, two-point discriminatory ability of the plantar side of the foot, duration of cutaneous vibration sensation, and error in the joint position sense of the ankle were assessed to quantify somatosensory function. The balance was tested by the Balance Evaluation System Test (BESTest) and postural sway measures during a standing task. Motor performance was evaluated by using a battery of clinical assessments: (1) Gross Motor Function Measure (GMFM-66-IS) to test gross motor ability; (2) spatiotemporal gait characteristics (velocity, step length) to evaluate walking ability; (3) Timed Up and Go (TUG) and 6 Min Walk (6MWT) tests to assess functional mobility; and (4) an isokinetic dynamometer was used to test the Maximum Volitional Isometric Contraction (MVIC) of the plantar flexor muscles. The results showed that the light touch pressure measure was strongly associated only with the 6MWT. Vibration and two-point discrimination were strongly related to balance performance. Further, the vibration sensation of the first metatarsal head demonstrated a significantly strong relationship with motor performance as measured by GMFM-66-IS, spatiotemporal gait parameters, TUG, and ankle plantar flexors strength test. The joint position sense of the ankle was only related to one subdomain of the BESTest (Postural Responses). This study provides preliminary evidence that LE sensory deficits can possibly contribute to the pronounced balance and motor impairments in CP. The findings emphasize the importance of developing a thorough LE sensory test battery that can guide traditional treatment protocols toward a more holistic therapeutic approach by combining both motor and sensory rehabilitative strategies to improve motor function in CP. |
first_indexed | 2024-12-12T05:27:35Z |
format | Article |
id | doaj.art-29ce8a0ef53746fc9c22727f2e231a72 |
institution | Directory Open Access Journal |
issn | 1662-5161 |
language | English |
last_indexed | 2024-12-12T05:27:35Z |
publishDate | 2020-02-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Human Neuroscience |
spelling | doaj.art-29ce8a0ef53746fc9c22727f2e231a722022-12-22T00:36:25ZengFrontiers Media S.A.Frontiers in Human Neuroscience1662-51612020-02-011410.3389/fnhum.2020.00045501950Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral PalsyAnastasia Zarkou0Samuel C. K. Lee1Samuel C. K. Lee2Laura A. Prosser3John J. Jeka4Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center, Atlanta, GA, United StatesDepartment of Physical Therapy and Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, United StatesResearch Department, Shriners Hospital for Children, Philadelphia, PA, United StatesDepartment of Pediatrics, University of Pennsylvania & The Children’s Hospital of Philadelphia, Philadelphia, PA, United StatesDepartment of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United StatesSensory dysfunction is prevalent in cerebral palsy (CP). Evidence suggests that sensory deficits can contribute to manual ability impairments in children with CP, yet it is still unclear how they contribute to balance and motor performance. Therefore, the objective of this study was to investigate the relationship between lower extremity (LE) somatosensation and functional performance in children with CP. Ten participants with spastic diplegia (Gross Motor Function Classification Scale: I-III) and who were able to stand independently completed the study. Threshold of light touch pressure, two-point discriminatory ability of the plantar side of the foot, duration of cutaneous vibration sensation, and error in the joint position sense of the ankle were assessed to quantify somatosensory function. The balance was tested by the Balance Evaluation System Test (BESTest) and postural sway measures during a standing task. Motor performance was evaluated by using a battery of clinical assessments: (1) Gross Motor Function Measure (GMFM-66-IS) to test gross motor ability; (2) spatiotemporal gait characteristics (velocity, step length) to evaluate walking ability; (3) Timed Up and Go (TUG) and 6 Min Walk (6MWT) tests to assess functional mobility; and (4) an isokinetic dynamometer was used to test the Maximum Volitional Isometric Contraction (MVIC) of the plantar flexor muscles. The results showed that the light touch pressure measure was strongly associated only with the 6MWT. Vibration and two-point discrimination were strongly related to balance performance. Further, the vibration sensation of the first metatarsal head demonstrated a significantly strong relationship with motor performance as measured by GMFM-66-IS, spatiotemporal gait parameters, TUG, and ankle plantar flexors strength test. The joint position sense of the ankle was only related to one subdomain of the BESTest (Postural Responses). This study provides preliminary evidence that LE sensory deficits can possibly contribute to the pronounced balance and motor impairments in CP. The findings emphasize the importance of developing a thorough LE sensory test battery that can guide traditional treatment protocols toward a more holistic therapeutic approach by combining both motor and sensory rehabilitative strategies to improve motor function in CP.https://www.frontiersin.org/article/10.3389/fnhum.2020.00045/fullcerebral palsysomatosensationsensory functionbalancepostural controlmotor function |
spellingShingle | Anastasia Zarkou Samuel C. K. Lee Samuel C. K. Lee Laura A. Prosser John J. Jeka Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy Frontiers in Human Neuroscience cerebral palsy somatosensation sensory function balance postural control motor function |
title | Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy |
title_full | Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy |
title_fullStr | Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy |
title_full_unstemmed | Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy |
title_short | Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy |
title_sort | foot and ankle somatosensory deficits affect balance and motor function in children with cerebral palsy |
topic | cerebral palsy somatosensation sensory function balance postural control motor function |
url | https://www.frontiersin.org/article/10.3389/fnhum.2020.00045/full |
work_keys_str_mv | AT anastasiazarkou footandanklesomatosensorydeficitsaffectbalanceandmotorfunctioninchildrenwithcerebralpalsy AT samuelcklee footandanklesomatosensorydeficitsaffectbalanceandmotorfunctioninchildrenwithcerebralpalsy AT samuelcklee footandanklesomatosensorydeficitsaffectbalanceandmotorfunctioninchildrenwithcerebralpalsy AT lauraaprosser footandanklesomatosensorydeficitsaffectbalanceandmotorfunctioninchildrenwithcerebralpalsy AT johnjjeka footandanklesomatosensorydeficitsaffectbalanceandmotorfunctioninchildrenwithcerebralpalsy |