A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm

Distributed learning is a promising alternative to central learning for machine learning (ML) model training, overcoming data-sharing problems in healthcare. Previous studies exploring federated learning (FL) or the traveling model (TM) setup for medical image-based disease classification often reli...

Full description

Bibliographic Details
Main Authors: Raissa Souza, Emma A. M. Stanley, Milton Camacho, Richard Camicioli, Oury Monchi, Zahinoor Ismail, Matthias Wilms, Nils D. Forkert
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-02-01
Series:Frontiers in Artificial Intelligence
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/frai.2024.1301997/full
_version_ 1827356643703128064
author Raissa Souza
Raissa Souza
Raissa Souza
Raissa Souza
Emma A. M. Stanley
Emma A. M. Stanley
Emma A. M. Stanley
Emma A. M. Stanley
Milton Camacho
Milton Camacho
Milton Camacho
Milton Camacho
Richard Camicioli
Oury Monchi
Oury Monchi
Oury Monchi
Oury Monchi
Oury Monchi
Zahinoor Ismail
Zahinoor Ismail
Zahinoor Ismail
Zahinoor Ismail
Matthias Wilms
Matthias Wilms
Matthias Wilms
Matthias Wilms
Nils D. Forkert
Nils D. Forkert
Nils D. Forkert
Nils D. Forkert
author_facet Raissa Souza
Raissa Souza
Raissa Souza
Raissa Souza
Emma A. M. Stanley
Emma A. M. Stanley
Emma A. M. Stanley
Emma A. M. Stanley
Milton Camacho
Milton Camacho
Milton Camacho
Milton Camacho
Richard Camicioli
Oury Monchi
Oury Monchi
Oury Monchi
Oury Monchi
Oury Monchi
Zahinoor Ismail
Zahinoor Ismail
Zahinoor Ismail
Zahinoor Ismail
Matthias Wilms
Matthias Wilms
Matthias Wilms
Matthias Wilms
Nils D. Forkert
Nils D. Forkert
Nils D. Forkert
Nils D. Forkert
author_sort Raissa Souza
collection DOAJ
description Distributed learning is a promising alternative to central learning for machine learning (ML) model training, overcoming data-sharing problems in healthcare. Previous studies exploring federated learning (FL) or the traveling model (TM) setup for medical image-based disease classification often relied on large databases with a limited number of centers or simulated artificial centers, raising doubts about real-world applicability. This study develops and evaluates a convolution neural network (CNN) for Parkinson's disease classification using data acquired by 83 diverse real centers around the world, mostly contributing small training samples. Our approach specifically makes use of the TM setup, which has proven effective in scenarios with limited data availability but has never been used for image-based disease classification. Our findings reveal that TM is effective for training CNN models, even in complex real-world scenarios with variable data distributions. After sufficient training cycles, the TM-trained CNN matches or slightly surpasses the performance of the centrally trained counterpart (AUROC of 83% vs. 80%). Our study highlights, for the first time, the effectiveness of TM in 3D medical image classification, especially in scenarios with limited training samples and heterogeneous distributed data. These insights are relevant for situations where ML models are supposed to be trained using data from small or remote medical centers, and rare diseases with sparse cases. The simplicity of this approach enables a broad application to many deep learning tasks, enhancing its clinical utility across various contexts and medical facilities.
first_indexed 2024-03-08T05:12:52Z
format Article
id doaj.art-29d7e62d83354025a6e62fa38cfd298f
institution Directory Open Access Journal
issn 2624-8212
language English
last_indexed 2024-03-08T05:12:52Z
publishDate 2024-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Artificial Intelligence
spelling doaj.art-29d7e62d83354025a6e62fa38cfd298f2024-02-07T05:24:31ZengFrontiers Media S.A.Frontiers in Artificial Intelligence2624-82122024-02-01710.3389/frai.2024.13019971301997A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigmRaissa Souza0Raissa Souza1Raissa Souza2Raissa Souza3Emma A. M. Stanley4Emma A. M. Stanley5Emma A. M. Stanley6Emma A. M. Stanley7Milton Camacho8Milton Camacho9Milton Camacho10Milton Camacho11Richard Camicioli12Oury Monchi13Oury Monchi14Oury Monchi15Oury Monchi16Oury Monchi17Zahinoor Ismail18Zahinoor Ismail19Zahinoor Ismail20Zahinoor Ismail21Matthias Wilms22Matthias Wilms23Matthias Wilms24Matthias Wilms25Nils D. Forkert26Nils D. Forkert27Nils D. Forkert28Nils D. Forkert29Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaHotchkiss Brain Institute, University of Calgary, Calgary, AB, CanadaBiomedical Engineering Graduate Program, University of Calgary, Calgary, AB, CanadaAlberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, CanadaDepartment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaHotchkiss Brain Institute, University of Calgary, Calgary, AB, CanadaBiomedical Engineering Graduate Program, University of Calgary, Calgary, AB, CanadaAlberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, CanadaDepartment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaHotchkiss Brain Institute, University of Calgary, Calgary, AB, CanadaBiomedical Engineering Graduate Program, University of Calgary, Calgary, AB, CanadaAlberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, CanadaDepartment of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, CanadaDepartment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaHotchkiss Brain Institute, University of Calgary, Calgary, AB, CanadaDepartment of Radiology, Radio-oncology and Nuclear Medicine, Université de Montréal, Montréal, QC, CanadaCentre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, QC, CanadaDepartment of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaHotchkiss Brain Institute, University of Calgary, Calgary, AB, CanadaDepartment of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaDepartment of Psychiatry, University of Calgary, Calgary, AB, Canada0Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United KingdomHotchkiss Brain Institute, University of Calgary, Calgary, AB, CanadaAlberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada1Department of Pediatrics, University of Calgary, Calgary, AB, Canada2Department of Community Health Sciences, University of Calgary, Calgary, AB, CanadaDepartment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaHotchkiss Brain Institute, University of Calgary, Calgary, AB, CanadaAlberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, CanadaDepartment of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, CanadaDistributed learning is a promising alternative to central learning for machine learning (ML) model training, overcoming data-sharing problems in healthcare. Previous studies exploring federated learning (FL) or the traveling model (TM) setup for medical image-based disease classification often relied on large databases with a limited number of centers or simulated artificial centers, raising doubts about real-world applicability. This study develops and evaluates a convolution neural network (CNN) for Parkinson's disease classification using data acquired by 83 diverse real centers around the world, mostly contributing small training samples. Our approach specifically makes use of the TM setup, which has proven effective in scenarios with limited data availability but has never been used for image-based disease classification. Our findings reveal that TM is effective for training CNN models, even in complex real-world scenarios with variable data distributions. After sufficient training cycles, the TM-trained CNN matches or slightly surpasses the performance of the centrally trained counterpart (AUROC of 83% vs. 80%). Our study highlights, for the first time, the effectiveness of TM in 3D medical image classification, especially in scenarios with limited training samples and heterogeneous distributed data. These insights are relevant for situations where ML models are supposed to be trained using data from small or remote medical centers, and rare diseases with sparse cases. The simplicity of this approach enables a broad application to many deep learning tasks, enhancing its clinical utility across various contexts and medical facilities.https://www.frontiersin.org/articles/10.3389/frai.2024.1301997/fulltraveling modelfederated learningdistributed learningParkinson's diseasemulti-center
spellingShingle Raissa Souza
Raissa Souza
Raissa Souza
Raissa Souza
Emma A. M. Stanley
Emma A. M. Stanley
Emma A. M. Stanley
Emma A. M. Stanley
Milton Camacho
Milton Camacho
Milton Camacho
Milton Camacho
Richard Camicioli
Oury Monchi
Oury Monchi
Oury Monchi
Oury Monchi
Oury Monchi
Zahinoor Ismail
Zahinoor Ismail
Zahinoor Ismail
Zahinoor Ismail
Matthias Wilms
Matthias Wilms
Matthias Wilms
Matthias Wilms
Nils D. Forkert
Nils D. Forkert
Nils D. Forkert
Nils D. Forkert
A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm
Frontiers in Artificial Intelligence
traveling model
federated learning
distributed learning
Parkinson's disease
multi-center
title A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm
title_full A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm
title_fullStr A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm
title_full_unstemmed A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm
title_short A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm
title_sort multi center distributed learning approach for parkinson s disease classification using the traveling model paradigm
topic traveling model
federated learning
distributed learning
Parkinson's disease
multi-center
url https://www.frontiersin.org/articles/10.3389/frai.2024.1301997/full
work_keys_str_mv AT raissasouza amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT raissasouza amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT raissasouza amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT raissasouza amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT emmaamstanley amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT emmaamstanley amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT emmaamstanley amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT emmaamstanley amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT miltoncamacho amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT miltoncamacho amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT miltoncamacho amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT miltoncamacho amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT richardcamicioli amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT zahinoorismail amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT zahinoorismail amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT zahinoorismail amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT zahinoorismail amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT matthiaswilms amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT matthiaswilms amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT matthiaswilms amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT matthiaswilms amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT nilsdforkert amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT nilsdforkert amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT nilsdforkert amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT nilsdforkert amulticenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT raissasouza multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT raissasouza multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT raissasouza multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT raissasouza multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT emmaamstanley multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT emmaamstanley multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT emmaamstanley multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT emmaamstanley multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT miltoncamacho multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT miltoncamacho multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT miltoncamacho multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT miltoncamacho multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT richardcamicioli multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT ourymonchi multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT zahinoorismail multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT zahinoorismail multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT zahinoorismail multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT zahinoorismail multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT matthiaswilms multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT matthiaswilms multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT matthiaswilms multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT matthiaswilms multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT nilsdforkert multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT nilsdforkert multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT nilsdforkert multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm
AT nilsdforkert multicenterdistributedlearningapproachforparkinsonsdiseaseclassificationusingthetravelingmodelparadigm