The Periodic Character of the Difference Equation xn+1=f(xn−l+1,xn−2k+1)

In this paper, we consider the nonlinear difference equation xn+1=f(xn−l+1,xn−2k+1), n=0,1,…, where k,l∈{1,2,…} with 2k≠l and gcd(2k,l)=1 and the initial values x−α,x−α+1,…,x0∈(0,+∞) with α=max{l−1,2k−1}. We give sufficient...

Full description

Bibliographic Details
Main Authors: Taixiang Sun, Hongjian Xi
Format: Article
Language:English
Published: SpringerOpen 2008-03-01
Series:Advances in Difference Equations
Online Access:http://dx.doi.org/10.1155/2008/143723
_version_ 1818188136631500800
author Taixiang Sun
Hongjian Xi
author_facet Taixiang Sun
Hongjian Xi
author_sort Taixiang Sun
collection DOAJ
description In this paper, we consider the nonlinear difference equation xn+1=f(xn−l+1,xn−2k+1), n=0,1,…, where k,l∈{1,2,…} with 2k≠l and gcd(2k,l)=1 and the initial values x−α,x−α+1,…,x0∈(0,+∞) with α=max{l−1,2k−1}. We give sufficient conditions under which every positive solution of this equation converges to a ( not necessarily prime ) 2-periodic solution, which extends and includes corresponding results obtained in the recent literature.
first_indexed 2024-12-11T23:22:08Z
format Article
id doaj.art-29dad5907c0c49e78ac5209eb618e134
institution Directory Open Access Journal
issn 1687-1839
language English
last_indexed 2024-12-11T23:22:08Z
publishDate 2008-03-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-29dad5907c0c49e78ac5209eb618e1342022-12-22T00:46:19ZengSpringerOpenAdvances in Difference Equations1687-18392008-03-01200810.1155/2008/143723The Periodic Character of the Difference Equation xn+1=f(xn−l+1,xn−2k+1)Taixiang SunHongjian XiIn this paper, we consider the nonlinear difference equation xn+1=f(xn−l+1,xn−2k+1), n=0,1,…, where k,l∈{1,2,…} with 2k≠l and gcd(2k,l)=1 and the initial values x−α,x−α+1,…,x0∈(0,+∞) with α=max{l−1,2k−1}. We give sufficient conditions under which every positive solution of this equation converges to a ( not necessarily prime ) 2-periodic solution, which extends and includes corresponding results obtained in the recent literature.http://dx.doi.org/10.1155/2008/143723
spellingShingle Taixiang Sun
Hongjian Xi
The Periodic Character of the Difference Equation xn+1=f(xn−l+1,xn−2k+1)
Advances in Difference Equations
title The Periodic Character of the Difference Equation xn+1=f(xn−l+1,xn−2k+1)
title_full The Periodic Character of the Difference Equation xn+1=f(xn−l+1,xn−2k+1)
title_fullStr The Periodic Character of the Difference Equation xn+1=f(xn−l+1,xn−2k+1)
title_full_unstemmed The Periodic Character of the Difference Equation xn+1=f(xn−l+1,xn−2k+1)
title_short The Periodic Character of the Difference Equation xn+1=f(xn−l+1,xn−2k+1)
title_sort periodic character of the difference equation xn 1 f xna¢a a l 1 xna¢a a 2k 1
url http://dx.doi.org/10.1155/2008/143723
work_keys_str_mv AT taixiangsun theperiodiccharacterofthedifferenceequationxn1fxnaaˆal1xnaaˆa2k1
AT hongjianxi theperiodiccharacterofthedifferenceequationxn1fxnaaˆal1xnaaˆa2k1
AT taixiangsun periodiccharacterofthedifferenceequationxn1fxnaaˆal1xnaaˆa2k1
AT hongjianxi periodiccharacterofthedifferenceequationxn1fxnaaˆal1xnaaˆa2k1