On the Monoid of Unital Endomorphisms of a Boolean Ring

Let <i>X</i> be a nonempty set and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)&l...

Full description

Bibliographic Details
Main Authors: Bana Al Subaiei, Noômen Jarboui
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/10/4/305
_version_ 1797506573278380032
author Bana Al Subaiei
Noômen Jarboui
author_facet Bana Al Subaiei
Noômen Jarboui
author_sort Bana Al Subaiei
collection DOAJ
description Let <i>X</i> be a nonempty set and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> the power set of <i>X</i>. The aim of this paper is to provide an explicit description of the monoid <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>End</mi><msub><mn>1</mn><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msub></msub><mrow><mo>(</mo><mi mathvariant="script">P</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of unital ring endomorphisms of the Boolean ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> and the automorphism group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Aut</mi><mo>(</mo><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> when <i>X</i> is finite. Among other facts, it is shown that if <i>X</i> has cardinality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>End</mi><msub><mn>1</mn><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msub></msub><mrow><mo>(</mo><mi mathvariant="script">P</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≅</mo><msubsup><mi>T</mi><mi>n</mi><mrow><mi>o</mi><mi>p</mi></mrow></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>n</mi></msub></semantics></math></inline-formula> is the full transformation monoid on the set <i>X</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Aut</mi><mrow><mo>(</mo><mi mathvariant="script">P</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≅</mo><msub><mi>S</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T04:34:27Z
format Article
id doaj.art-29dc70f9c9a84926bb4f18b27eff98b0
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T04:34:27Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-29dc70f9c9a84926bb4f18b27eff98b02023-11-23T03:49:49ZengMDPI AGAxioms2075-16802021-11-0110430510.3390/axioms10040305On the Monoid of Unital Endomorphisms of a Boolean RingBana Al Subaiei0Noômen Jarboui1Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi ArabiaDépartement de Mathématiques, Faculté des Sciences de Sfax, Université de Sfax, P.O. Box 1171, Route de Soukra, Sfax 3038, TunisiaLet <i>X</i> be a nonempty set and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> the power set of <i>X</i>. The aim of this paper is to provide an explicit description of the monoid <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>End</mi><msub><mn>1</mn><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msub></msub><mrow><mo>(</mo><mi mathvariant="script">P</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of unital ring endomorphisms of the Boolean ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></semantics></math></inline-formula> and the automorphism group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Aut</mi><mo>(</mo><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> when <i>X</i> is finite. Among other facts, it is shown that if <i>X</i> has cardinality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>End</mi><msub><mn>1</mn><mrow><mi mathvariant="script">P</mi><mo>(</mo><mi>X</mi><mo>)</mo></mrow></msub></msub><mrow><mo>(</mo><mi mathvariant="script">P</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≅</mo><msubsup><mi>T</mi><mi>n</mi><mrow><mi>o</mi><mi>p</mi></mrow></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>n</mi></msub></semantics></math></inline-formula> is the full transformation monoid on the set <i>X</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Aut</mi><mrow><mo>(</mo><mi mathvariant="script">P</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≅</mo><msub><mi>S</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/10/4/305Boolean ringpower setprime idealmaximal idealring endomorphism
spellingShingle Bana Al Subaiei
Noômen Jarboui
On the Monoid of Unital Endomorphisms of a Boolean Ring
Axioms
Boolean ring
power set
prime ideal
maximal ideal
ring endomorphism
title On the Monoid of Unital Endomorphisms of a Boolean Ring
title_full On the Monoid of Unital Endomorphisms of a Boolean Ring
title_fullStr On the Monoid of Unital Endomorphisms of a Boolean Ring
title_full_unstemmed On the Monoid of Unital Endomorphisms of a Boolean Ring
title_short On the Monoid of Unital Endomorphisms of a Boolean Ring
title_sort on the monoid of unital endomorphisms of a boolean ring
topic Boolean ring
power set
prime ideal
maximal ideal
ring endomorphism
url https://www.mdpi.com/2075-1680/10/4/305
work_keys_str_mv AT banaalsubaiei onthemonoidofunitalendomorphismsofabooleanring
AT noomenjarboui onthemonoidofunitalendomorphismsofabooleanring