Regularity for the axisymmetric Navier-Stokes equations
In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2015-09-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2015/250/abstr.html |
Summary: | In this article, we establish a regularity criterion for the Navier-Stokes
system with axisymmetric initial data. It is proved that if the
local axisymmetric smooth solution $u$ satisfies
${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where
$\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $, and
$3 < \beta \leq \infty$, then the strong solution keeps smoothness up
to time T. |
---|---|
ISSN: | 1072-6691 |