Regularity for the axisymmetric Navier-Stokes equations

In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $,...

Full description

Bibliographic Details
Main Author: Peng Wang
Format: Article
Language:English
Published: Texas State University 2015-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/250/abstr.html
Description
Summary:In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $, and $3 < \beta \leq \infty$, then the strong solution keeps smoothness up to time T.
ISSN:1072-6691