Regularity for the axisymmetric Navier-Stokes equations

In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $,...

Full description

Bibliographic Details
Main Author: Peng Wang
Format: Article
Language:English
Published: Texas State University 2015-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/250/abstr.html
_version_ 1818945302923575296
author Peng Wang
author_facet Peng Wang
author_sort Peng Wang
collection DOAJ
description In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $, and $3 < \beta \leq \infty$, then the strong solution keeps smoothness up to time T.
first_indexed 2024-12-20T07:56:58Z
format Article
id doaj.art-29dd5f7bc7f04ddda0c4b24d52527f4c
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-20T07:56:58Z
publishDate 2015-09-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-29dd5f7bc7f04ddda0c4b24d52527f4c2022-12-21T19:47:40ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-09-012015250,19Regularity for the axisymmetric Navier-Stokes equationsPeng Wang0 Zhejiang Normal Univ.,Zhejiang, China In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $, and $3 < \beta \leq \infty$, then the strong solution keeps smoothness up to time T.http://ejde.math.txstate.edu/Volumes/2015/250/abstr.htmlNavier-Stokes equationsaxi-symmetric flowregularity criterion
spellingShingle Peng Wang
Regularity for the axisymmetric Navier-Stokes equations
Electronic Journal of Differential Equations
Navier-Stokes equations
axi-symmetric flow
regularity criterion
title Regularity for the axisymmetric Navier-Stokes equations
title_full Regularity for the axisymmetric Navier-Stokes equations
title_fullStr Regularity for the axisymmetric Navier-Stokes equations
title_full_unstemmed Regularity for the axisymmetric Navier-Stokes equations
title_short Regularity for the axisymmetric Navier-Stokes equations
title_sort regularity for the axisymmetric navier stokes equations
topic Navier-Stokes equations
axi-symmetric flow
regularity criterion
url http://ejde.math.txstate.edu/Volumes/2015/250/abstr.html
work_keys_str_mv AT pengwang regularityfortheaxisymmetricnavierstokesequations