Regularity for the axisymmetric Navier-Stokes equations
In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2015-09-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2015/250/abstr.html |
_version_ | 1818945302923575296 |
---|---|
author | Peng Wang |
author_facet | Peng Wang |
author_sort | Peng Wang |
collection | DOAJ |
description | In this article, we establish a regularity criterion for the Navier-Stokes
system with axisymmetric initial data. It is proved that if the
local axisymmetric smooth solution $u$ satisfies
${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where
$\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $, and
$3 < \beta \leq \infty$, then the strong solution keeps smoothness up
to time T. |
first_indexed | 2024-12-20T07:56:58Z |
format | Article |
id | doaj.art-29dd5f7bc7f04ddda0c4b24d52527f4c |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-12-20T07:56:58Z |
publishDate | 2015-09-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-29dd5f7bc7f04ddda0c4b24d52527f4c2022-12-21T19:47:40ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-09-012015250,19Regularity for the axisymmetric Navier-Stokes equationsPeng Wang0 Zhejiang Normal Univ.,Zhejiang, China In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution $u$ satisfies ${\|u^\theta\|_{L^{\alpha}(0,T; L^{\beta})}}<\infty$ , where $\frac{2}{\alpha}+\frac{3}{\beta} \leq 1 $, and $3 < \beta \leq \infty$, then the strong solution keeps smoothness up to time T.http://ejde.math.txstate.edu/Volumes/2015/250/abstr.htmlNavier-Stokes equationsaxi-symmetric flowregularity criterion |
spellingShingle | Peng Wang Regularity for the axisymmetric Navier-Stokes equations Electronic Journal of Differential Equations Navier-Stokes equations axi-symmetric flow regularity criterion |
title | Regularity for the axisymmetric Navier-Stokes equations |
title_full | Regularity for the axisymmetric Navier-Stokes equations |
title_fullStr | Regularity for the axisymmetric Navier-Stokes equations |
title_full_unstemmed | Regularity for the axisymmetric Navier-Stokes equations |
title_short | Regularity for the axisymmetric Navier-Stokes equations |
title_sort | regularity for the axisymmetric navier stokes equations |
topic | Navier-Stokes equations axi-symmetric flow regularity criterion |
url | http://ejde.math.txstate.edu/Volumes/2015/250/abstr.html |
work_keys_str_mv | AT pengwang regularityfortheaxisymmetricnavierstokesequations |