Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data

Food production is a major driver of environmental change, and unhealthy diets are the leading cause of global disease burden. In high-income countries (HICs), modelling studies suggest that adoption of healthy diets could improve population health and reduce environmental footprints associated with...

Full description

Bibliographic Details
Main Authors: L. Aleksandrowicz, R. Green, E.J.M. Joy, F. Harris, J. Hillier, S.H. Vetter, P. Smith, B. Kulkarni, A.D. Dangour, A. Haines
Format: Article
Language:English
Published: Elsevier 2019-05-01
Series:Environment International
Online Access:http://www.sciencedirect.com/science/article/pii/S0160412018314417
_version_ 1818257106473582592
author L. Aleksandrowicz
R. Green
E.J.M. Joy
F. Harris
J. Hillier
S.H. Vetter
P. Smith
B. Kulkarni
A.D. Dangour
A. Haines
author_facet L. Aleksandrowicz
R. Green
E.J.M. Joy
F. Harris
J. Hillier
S.H. Vetter
P. Smith
B. Kulkarni
A.D. Dangour
A. Haines
author_sort L. Aleksandrowicz
collection DOAJ
description Food production is a major driver of environmental change, and unhealthy diets are the leading cause of global disease burden. In high-income countries (HICs), modelling studies suggest that adoption of healthy diets could improve population health and reduce environmental footprints associated with food production. We assessed whether such benefits from dietary change could occur in India, where under-nutrition and overweight and obesity are simultaneously prevalent.We calculated the potential changes in greenhouse gas (GHG) emissions, blue and green water footprints (WFs), and land use (LU), that would result from shifting current national food consumption patterns in India to healthy diets (meeting dietary guidelines) and to “affluent diets” (those consumed by the wealthiest quartile of households, which may represent future purchasing power and nutritional trajectories). Dietary data were derived from the 2011–12 nationally-representative household expenditure survey, and we assessed dietary scenarios nationally and across six Indian sub-regions, by rural or urban location, and for those consuming above or below recommended dietary energy intakes. We modelled the changes in consumption of 34 food groups necessary to meet Indian dietary guidelines, as well as an affluent diet representative of those in the highest wealth quartile. These changes were combined with food-specific data on GHG emissions, calculated using the Cool Farm Tool, and WF and LU adapted from the Water Footprint Network and Food and Agriculture Organization, respectively.Shifting to healthy guidelines nationally required a minor increase in dietary energy (3%), with larger increases in fruit (18%) and vegetable (72%) intake, though baseline proportion of dietary energy from fat and protein was adequate and did not change significantly. Meeting healthy guidelines slightly increased environmental footprints by about 3–5% across GHG emissions, blue and green WFs, and LU. However, these national averages masked substantial variation within sub-populations. For example, shifting to healthy diets among those with dietary energy intake below recommended guidelines would result in increases of 28% in GHG emissions, 18 and 34% in blue and green WFs, respectively, and 41% in LU. Decreased environmental impacts were seen among those who currently consume above recommended dietary energy (−6 to −16% across footprints). Adoption of affluent diets by the whole population would result in increases of 19–36% across the environmental indicators. Specific food groups contributing to these shifts varied by scenario. Environmental impacts also varied markedly between six major Indian sub-regions.In India, where undernutrition is prevalent, widespread adoption of healthy diets may lead to small increases in the environmental footprints of the food system relative to the status quo, although much larger increases would occur if there was widespread adoption of diets currently consumed by the wealthiest quartile of the population. To achieve lower diet-related disease burdens and reduced environmental footprints of the food system, greater efficiency of food production and reductions in food waste are likely to be required alongside promotion of healthy diets. Keywords: India, Dietary intake, Sustainable diets, Dietary guidelines, Greenhouse gas emissions, Land use, Water use
first_indexed 2024-12-12T17:38:23Z
format Article
id doaj.art-29ed418d95334d5d9dc18e56006aa7f0
institution Directory Open Access Journal
issn 0160-4120
language English
last_indexed 2024-12-12T17:38:23Z
publishDate 2019-05-01
publisher Elsevier
record_format Article
series Environment International
spelling doaj.art-29ed418d95334d5d9dc18e56006aa7f02022-12-22T00:17:09ZengElsevierEnvironment International0160-41202019-05-01126207215Environmental impacts of dietary shifts in India: A modelling study using nationally-representative dataL. Aleksandrowicz0R. Green1E.J.M. Joy2F. Harris3J. Hillier4S.H. Vetter5P. Smith6B. Kulkarni7A.D. Dangour8A. Haines9Dept. of Population Health, London School of Hygiene & Tropical Medicine, UK; Leverhulme Centre for Integrative Research on Agriculture & Health, UK; Corresponding author at: Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.Dept. of Population Health, London School of Hygiene & Tropical Medicine, UK; Leverhulme Centre for Integrative Research on Agriculture & Health, UKDept. of Population Health, London School of Hygiene & Tropical Medicine, UK; Leverhulme Centre for Integrative Research on Agriculture & Health, UKDept. of Population Health, London School of Hygiene & Tropical Medicine, UKRoyal (Dick) School of Veterinary Studies, University of Edinburgh, UKInstitute of Biological and Environmental Sciences, University of Aberdeen, UKInstitute of Biological and Environmental Sciences, University of Aberdeen, UKClinical Division, National Institute of Nutrition, IndiaDept. of Population Health, London School of Hygiene & Tropical Medicine, UK; Leverhulme Centre for Integrative Research on Agriculture & Health, UKDept. of Population Health, London School of Hygiene & Tropical Medicine, UK; Dept. of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, UKFood production is a major driver of environmental change, and unhealthy diets are the leading cause of global disease burden. In high-income countries (HICs), modelling studies suggest that adoption of healthy diets could improve population health and reduce environmental footprints associated with food production. We assessed whether such benefits from dietary change could occur in India, where under-nutrition and overweight and obesity are simultaneously prevalent.We calculated the potential changes in greenhouse gas (GHG) emissions, blue and green water footprints (WFs), and land use (LU), that would result from shifting current national food consumption patterns in India to healthy diets (meeting dietary guidelines) and to “affluent diets” (those consumed by the wealthiest quartile of households, which may represent future purchasing power and nutritional trajectories). Dietary data were derived from the 2011–12 nationally-representative household expenditure survey, and we assessed dietary scenarios nationally and across six Indian sub-regions, by rural or urban location, and for those consuming above or below recommended dietary energy intakes. We modelled the changes in consumption of 34 food groups necessary to meet Indian dietary guidelines, as well as an affluent diet representative of those in the highest wealth quartile. These changes were combined with food-specific data on GHG emissions, calculated using the Cool Farm Tool, and WF and LU adapted from the Water Footprint Network and Food and Agriculture Organization, respectively.Shifting to healthy guidelines nationally required a minor increase in dietary energy (3%), with larger increases in fruit (18%) and vegetable (72%) intake, though baseline proportion of dietary energy from fat and protein was adequate and did not change significantly. Meeting healthy guidelines slightly increased environmental footprints by about 3–5% across GHG emissions, blue and green WFs, and LU. However, these national averages masked substantial variation within sub-populations. For example, shifting to healthy diets among those with dietary energy intake below recommended guidelines would result in increases of 28% in GHG emissions, 18 and 34% in blue and green WFs, respectively, and 41% in LU. Decreased environmental impacts were seen among those who currently consume above recommended dietary energy (−6 to −16% across footprints). Adoption of affluent diets by the whole population would result in increases of 19–36% across the environmental indicators. Specific food groups contributing to these shifts varied by scenario. Environmental impacts also varied markedly between six major Indian sub-regions.In India, where undernutrition is prevalent, widespread adoption of healthy diets may lead to small increases in the environmental footprints of the food system relative to the status quo, although much larger increases would occur if there was widespread adoption of diets currently consumed by the wealthiest quartile of the population. To achieve lower diet-related disease burdens and reduced environmental footprints of the food system, greater efficiency of food production and reductions in food waste are likely to be required alongside promotion of healthy diets. Keywords: India, Dietary intake, Sustainable diets, Dietary guidelines, Greenhouse gas emissions, Land use, Water usehttp://www.sciencedirect.com/science/article/pii/S0160412018314417
spellingShingle L. Aleksandrowicz
R. Green
E.J.M. Joy
F. Harris
J. Hillier
S.H. Vetter
P. Smith
B. Kulkarni
A.D. Dangour
A. Haines
Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data
Environment International
title Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data
title_full Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data
title_fullStr Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data
title_full_unstemmed Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data
title_short Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data
title_sort environmental impacts of dietary shifts in india a modelling study using nationally representative data
url http://www.sciencedirect.com/science/article/pii/S0160412018314417
work_keys_str_mv AT laleksandrowicz environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT rgreen environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT ejmjoy environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT fharris environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT jhillier environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT shvetter environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT psmith environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT bkulkarni environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT addangour environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata
AT ahaines environmentalimpactsofdietaryshiftsinindiaamodellingstudyusingnationallyrepresentativedata