Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation

This paper deals with homogeneous and non-homogeneous fractional diffusion difference equations. The fractional operators in space and time are defined in the sense of Grünwald and Letnikov. Applying results on the existence of eigenvalues and corresponding eigenfunctions of the Sturm–Liouville prob...

Full description

Bibliographic Details
Main Authors: Malinowska Agnieszka B., Odzijewicz Tatiana, Poskrobko Anna
Format: Article
Language:English
Published: Sciendo 2023-09-01
Series:International Journal of Applied Mathematics and Computer Science
Subjects:
Online Access:https://doi.org/10.34768/amcs-2023-0025
_version_ 1827793325199982592
author Malinowska Agnieszka B.
Odzijewicz Tatiana
Poskrobko Anna
author_facet Malinowska Agnieszka B.
Odzijewicz Tatiana
Poskrobko Anna
author_sort Malinowska Agnieszka B.
collection DOAJ
description This paper deals with homogeneous and non-homogeneous fractional diffusion difference equations. The fractional operators in space and time are defined in the sense of Grünwald and Letnikov. Applying results on the existence of eigenvalues and corresponding eigenfunctions of the Sturm–Liouville problem, we show that solutions of fractional diffusion difference equations exist and are given by a finite series.
first_indexed 2024-03-11T18:15:53Z
format Article
id doaj.art-29f21b2df8124cd386950e1a082df287
institution Directory Open Access Journal
issn 2083-8492
language English
last_indexed 2024-03-11T18:15:53Z
publishDate 2023-09-01
publisher Sciendo
record_format Article
series International Journal of Applied Mathematics and Computer Science
spelling doaj.art-29f21b2df8124cd386950e1a082df2872023-10-16T06:08:09ZengSciendoInternational Journal of Applied Mathematics and Computer Science2083-84922023-09-0133334935910.34768/amcs-2023-0025Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference EquationMalinowska Agnieszka B.0Odzijewicz Tatiana1Poskrobko Anna21Faculty of Computer Science, Bialystok University of Technology, ul. Wiejska 45A, 15-351Białystok, Poland2Institute of Mathematical Economics, SGH Warsaw School of Economics Al. Niepodległości 162, 02-554Warsaw, Poland1Faculty of Computer Science, Bialystok University of Technology, ul. Wiejska 45A, 15-351Białystok, PolandThis paper deals with homogeneous and non-homogeneous fractional diffusion difference equations. The fractional operators in space and time are defined in the sense of Grünwald and Letnikov. Applying results on the existence of eigenvalues and corresponding eigenfunctions of the Sturm–Liouville problem, we show that solutions of fractional diffusion difference equations exist and are given by a finite series.https://doi.org/10.34768/amcs-2023-0025anomalous diffusionfractional diffusion equationsfractional calculusdifference equations
spellingShingle Malinowska Agnieszka B.
Odzijewicz Tatiana
Poskrobko Anna
Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation
International Journal of Applied Mathematics and Computer Science
anomalous diffusion
fractional diffusion equations
fractional calculus
difference equations
title Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation
title_full Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation
title_fullStr Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation
title_full_unstemmed Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation
title_short Applications of the Fractional Sturm–Liouville Difference Problem to the Fractional Diffusion Difference Equation
title_sort applications of the fractional sturm liouville difference problem to the fractional diffusion difference equation
topic anomalous diffusion
fractional diffusion equations
fractional calculus
difference equations
url https://doi.org/10.34768/amcs-2023-0025
work_keys_str_mv AT malinowskaagnieszkab applicationsofthefractionalsturmliouvilledifferenceproblemtothefractionaldiffusiondifferenceequation
AT odzijewicztatiana applicationsofthefractionalsturmliouvilledifferenceproblemtothefractionaldiffusiondifferenceequation
AT poskrobkoanna applicationsofthefractionalsturmliouvilledifferenceproblemtothefractionaldiffusiondifferenceequation