Adsorption Ability of Graphene Aerogel and Reduced Graphene Aerogel toward 2,4-D Herbicide and Salicylic Acid

Within this work, new aerogels based on graphene oxide are proposed to adsorb salicylic acid (SA) and herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous media. Graphene oxide aerogel (GOA) and reduced graphene oxide aerogel (rGOA) were obtained by freeze-drying processes and then studied...

Full description

Bibliographic Details
Main Authors: Alexandra Yu. Kurmysheva, Oleg Yanushevich, Natella Krikheli, Olga Kramar, Marina D. Vedenyapina, Pavel Podrabinnik, Nestor Washington Solís Pinargote, Anton Smirnov, Ekaterina Kuznetsova, Vladislav V. Malyavin, Pavel Peretyagin, Sergey N. Grigoriev
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Gels
Subjects:
Online Access:https://www.mdpi.com/2310-2861/9/9/680
Description
Summary:Within this work, new aerogels based on graphene oxide are proposed to adsorb salicylic acid (SA) and herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous media. Graphene oxide aerogel (GOA) and reduced graphene oxide aerogel (rGOA) were obtained by freeze-drying processes and then studied by Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET) analysis. The influence of contact time and the concentration of the adsorbates were also assessed. It was found that equilibrium for high adsorption is reached in 150 min. In a single system, the pseudo-first-order, pseudo-second-order kinetic models, Intraparticle diffusion, and Elovich models were used to discuss the detail of the aerogel adsorbing pollutant. Moreover, the Langmuir, Freundlich, and Temkin adsorption models were applied to describe the equilibrium isotherms and calculate the isotherm constants.
ISSN:2310-2861