<i>sp</i><sup>2</sup> Carbon Stable Radicals
<i>sp</i><sup>2</sup> Nanocarbons such as fullerenes, carbon nanotubes, and graphene molecules are not only open-shell species, but spatially extended, due to which their chemistry is quite specific. Cogently revealed dependence of the final products composition on size and s...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | C |
Subjects: | |
Online Access: | https://www.mdpi.com/2311-5629/7/2/31 |
_version_ | 1797539940331945984 |
---|---|
author | Elena F. Sheka |
author_facet | Elena F. Sheka |
author_sort | Elena F. Sheka |
collection | DOAJ |
description | <i>sp</i><sup>2</sup> Nanocarbons such as fullerenes, carbon nanotubes, and graphene molecules are not only open-shell species, but spatially extended, due to which their chemistry is quite specific. Cogently revealed dependence of the final products composition on size and shape of the carbons in use as well as on the chemical prehistory is accumulated in a particular property—the stabilization of the species’ radical efficiency, thus providing the matter of stable radicals. If the feature is highly restricted and rarely available in ordinary chemistry, in the case of <i>sp</i><sup>2</sup> nanocarbons it is just an ordinary event providing, say, tons-in-mass stable radicals when either producing such widely used technological products as carbon black or dealing with deposits of natural <i>sp</i><sup>2</sup> carbons such as anthracite, shungite carbon, and other. Suggested in the paper is the consideration of stable radicals of <i>sp</i><sup>2</sup> nanocarbons from the standpoint of spin-delocalized topochemistry. Characterized in terms of the total and atomically partitioned number of effectively unpaired electrons as well as of the distribution of the latter over carbon atoms and described by selectively determined barriers of different reactions exhibiting topological essence of intermolecular interaction, <i>sp</i><sup>2</sup> nanocarbons reveal a peculiar topokinetics that lays the foundation of the stability of their radical properties. |
first_indexed | 2024-03-10T12:52:58Z |
format | Article |
id | doaj.art-2a0864b5d8e74f0294f0543c2d54a36e |
institution | Directory Open Access Journal |
issn | 2311-5629 |
language | English |
last_indexed | 2024-03-10T12:52:58Z |
publishDate | 2021-03-01 |
publisher | MDPI AG |
record_format | Article |
series | C |
spelling | doaj.art-2a0864b5d8e74f0294f0543c2d54a36e2023-11-21T12:05:22ZengMDPI AGC2311-56292021-03-01723110.3390/c7020031<i>sp</i><sup>2</sup> Carbon Stable RadicalsElena F. Sheka0Institute of Physical Research and Technology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia<i>sp</i><sup>2</sup> Nanocarbons such as fullerenes, carbon nanotubes, and graphene molecules are not only open-shell species, but spatially extended, due to which their chemistry is quite specific. Cogently revealed dependence of the final products composition on size and shape of the carbons in use as well as on the chemical prehistory is accumulated in a particular property—the stabilization of the species’ radical efficiency, thus providing the matter of stable radicals. If the feature is highly restricted and rarely available in ordinary chemistry, in the case of <i>sp</i><sup>2</sup> nanocarbons it is just an ordinary event providing, say, tons-in-mass stable radicals when either producing such widely used technological products as carbon black or dealing with deposits of natural <i>sp</i><sup>2</sup> carbons such as anthracite, shungite carbon, and other. Suggested in the paper is the consideration of stable radicals of <i>sp</i><sup>2</sup> nanocarbons from the standpoint of spin-delocalized topochemistry. Characterized in terms of the total and atomically partitioned number of effectively unpaired electrons as well as of the distribution of the latter over carbon atoms and described by selectively determined barriers of different reactions exhibiting topological essence of intermolecular interaction, <i>sp</i><sup>2</sup> nanocarbons reveal a peculiar topokinetics that lays the foundation of the stability of their radical properties.https://www.mdpi.com/2311-5629/7/2/31stable radicalsfullerenescarbon nanotubesgraphene moleculesspin chemistrytopokinetics |
spellingShingle | Elena F. Sheka <i>sp</i><sup>2</sup> Carbon Stable Radicals C stable radicals fullerenes carbon nanotubes graphene molecules spin chemistry topokinetics |
title | <i>sp</i><sup>2</sup> Carbon Stable Radicals |
title_full | <i>sp</i><sup>2</sup> Carbon Stable Radicals |
title_fullStr | <i>sp</i><sup>2</sup> Carbon Stable Radicals |
title_full_unstemmed | <i>sp</i><sup>2</sup> Carbon Stable Radicals |
title_short | <i>sp</i><sup>2</sup> Carbon Stable Radicals |
title_sort | i sp i sup 2 sup carbon stable radicals |
topic | stable radicals fullerenes carbon nanotubes graphene molecules spin chemistry topokinetics |
url | https://www.mdpi.com/2311-5629/7/2/31 |
work_keys_str_mv | AT elenafsheka ispisup2supcarbonstableradicals |