Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities
Pedestrian crossings are an essential part of the urban landscape, providing safe passage for pedestrians to cross busy streets. While some are regulated by timed signals and are marked with signs and lights, others are simply marked on the road and do not have additional infrastructure. Nevertheles...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-03-01
|
Series: | Information |
Subjects: | |
Online Access: | https://www.mdpi.com/2078-2489/15/3/169 |
_version_ | 1827305961149169664 |
---|---|
author | Gonçalo J. M. Rosa João M. S. Afonso Pedro D. Gaspar Vasco N. G. J. Soares João M. L. P. Caldeira |
author_facet | Gonçalo J. M. Rosa João M. S. Afonso Pedro D. Gaspar Vasco N. G. J. Soares João M. L. P. Caldeira |
author_sort | Gonçalo J. M. Rosa |
collection | DOAJ |
description | Pedestrian crossings are an essential part of the urban landscape, providing safe passage for pedestrians to cross busy streets. While some are regulated by timed signals and are marked with signs and lights, others are simply marked on the road and do not have additional infrastructure. Nevertheless, the markings undergo wear and tear due to traffic, weather, and road maintenance activities. If pedestrian crossing markings are excessively worn, drivers may not be able to see them, which creates road safety issues. This paper presents a study of computer vision techniques that can be used to identify and classify pedestrian crossings. It first introduces the related concepts. Then, it surveys related work and categorizes existing solutions, highlighting their key features, strengths, and limitations. The most promising techniques are identified and described: Convolutional Neural Networks, Histogram of Oriented Gradients, Maximally Stable Extremal Regions, Canny Edge, and thresholding methods. Their performance is evaluated and compared on a custom dataset developed for this work. Insights on open issues and research opportunities in the field are also provided. It is shown that managers responsible for road safety, in the context of a smart city, can benefit from computer vision approaches to automate the process of determining the wear and tear of pedestrian crossings. |
first_indexed | 2024-04-24T18:10:02Z |
format | Article |
id | doaj.art-2a0940c8560341449c17cfb6e7e0a172 |
institution | Directory Open Access Journal |
issn | 2078-2489 |
language | English |
last_indexed | 2024-04-24T18:10:02Z |
publishDate | 2024-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Information |
spelling | doaj.art-2a0940c8560341449c17cfb6e7e0a1722024-03-27T13:46:57ZengMDPI AGInformation2078-24892024-03-0115316910.3390/info15030169Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and OpportunitiesGonçalo J. M. Rosa0João M. S. Afonso1Pedro D. Gaspar2Vasco N. G. J. Soares3João M. L. P. Caldeira4Polytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral, n° 12, 6000-084 Castelo Branco, PortugalPolytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral, n° 12, 6000-084 Castelo Branco, PortugalDepartment of Electromechanical Engineering, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, PortugalPolytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral, n° 12, 6000-084 Castelo Branco, PortugalPolytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral, n° 12, 6000-084 Castelo Branco, PortugalPedestrian crossings are an essential part of the urban landscape, providing safe passage for pedestrians to cross busy streets. While some are regulated by timed signals and are marked with signs and lights, others are simply marked on the road and do not have additional infrastructure. Nevertheless, the markings undergo wear and tear due to traffic, weather, and road maintenance activities. If pedestrian crossing markings are excessively worn, drivers may not be able to see them, which creates road safety issues. This paper presents a study of computer vision techniques that can be used to identify and classify pedestrian crossings. It first introduces the related concepts. Then, it surveys related work and categorizes existing solutions, highlighting their key features, strengths, and limitations. The most promising techniques are identified and described: Convolutional Neural Networks, Histogram of Oriented Gradients, Maximally Stable Extremal Regions, Canny Edge, and thresholding methods. Their performance is evaluated and compared on a custom dataset developed for this work. Insights on open issues and research opportunities in the field are also provided. It is shown that managers responsible for road safety, in the context of a smart city, can benefit from computer vision approaches to automate the process of determining the wear and tear of pedestrian crossings.https://www.mdpi.com/2078-2489/15/3/169pedestrian crossingssmart citiescomputer visionstate-of-the-artperformance evaluation |
spellingShingle | Gonçalo J. M. Rosa João M. S. Afonso Pedro D. Gaspar Vasco N. G. J. Soares João M. L. P. Caldeira Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities Information pedestrian crossings smart cities computer vision state-of-the-art performance evaluation |
title | Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities |
title_full | Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities |
title_fullStr | Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities |
title_full_unstemmed | Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities |
title_short | Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities |
title_sort | detecting wear and tear in pedestrian crossings using computer vision techniques approaches challenges and opportunities |
topic | pedestrian crossings smart cities computer vision state-of-the-art performance evaluation |
url | https://www.mdpi.com/2078-2489/15/3/169 |
work_keys_str_mv | AT goncalojmrosa detectingwearandtearinpedestriancrossingsusingcomputervisiontechniquesapproacheschallengesandopportunities AT joaomsafonso detectingwearandtearinpedestriancrossingsusingcomputervisiontechniquesapproacheschallengesandopportunities AT pedrodgaspar detectingwearandtearinpedestriancrossingsusingcomputervisiontechniquesapproacheschallengesandopportunities AT vascongjsoares detectingwearandtearinpedestriancrossingsusingcomputervisiontechniquesapproacheschallengesandopportunities AT joaomlpcaldeira detectingwearandtearinpedestriancrossingsusingcomputervisiontechniquesapproacheschallengesandopportunities |