On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities

In this work, some numerical radius inequalities based on the recent Dragomir extension of Furuta’s inequality are obtained. Some particular cases are also provided. Among others, the celebrated Kittaneh inequality reads: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&...

Full description

Bibliographic Details
Main Authors: Mohammad W. Alomari, Gabriel Bercu, Christophe Chesneau
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/7/1432
_version_ 1797415387079376896
author Mohammad W. Alomari
Gabriel Bercu
Christophe Chesneau
author_facet Mohammad W. Alomari
Gabriel Bercu
Christophe Chesneau
author_sort Mohammad W. Alomari
collection DOAJ
description In this work, some numerical radius inequalities based on the recent Dragomir extension of Furuta’s inequality are obtained. Some particular cases are also provided. Among others, the celebrated Kittaneh inequality reads: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mfenced open="(" close=")"><mi>T</mi></mfenced><mo>≤</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced separators="" open="∥" close="∥"><mfenced open="|" close="|"><mi>T</mi></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><msup><mi>T</mi><mo>*</mo></msup></mfenced></mfenced></mrow></semantics></math></inline-formula>. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mfenced open="(" close=")"><mi>T</mi></mfenced><mo>≤</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced separators="" open="∥" close="∥"><mfenced open="|" close="|"><mi>T</mi></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><msup><mi>T</mi><mo>*</mo></msup></mfenced></mfenced><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><munder><mo movablelimits="false" form="prefix">inf</mo><mrow><mfenced open="∥" close="∥"><mi>x</mi></mfenced><mo>=</mo><mn>1</mn></mrow></munder><msup><mfenced separators="" open="(" close=")"><msup><mfenced separators="" open="⟨" close="⟩"><mrow><mfenced open="|" close="|"><mi>T</mi></mfenced><mi>x</mi><mo>,</mo><mi>x</mi></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mo>−</mo><msup><mfenced separators="" open="⟨" close="⟩"><mrow><mfenced separators="" open="|" close="|"><msup><mi>T</mi><mo>*</mo></msup></mfenced><mi>x</mi><mo>,</mo><mi>x</mi></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mfenced><mn>2</mn></msup></mrow></semantics></math></inline-formula>, which improves on the Kittaneh inequality for symmetric and non-symmetric Hilbert space operators. Other related improvements to well-known inequalities in literature are also provided.
first_indexed 2024-03-09T05:46:52Z
format Article
id doaj.art-2a0ae1a9c59e497b9e1cdc4696bdf6e0
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T05:46:52Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-2a0ae1a9c59e497b9e1cdc4696bdf6e02023-12-03T12:20:02ZengMDPI AGSymmetry2073-89942022-07-01147143210.3390/sym14071432On the Dragomir Extension of Furuta’s Inequality and Numerical Radius InequalitiesMohammad W. Alomari0Gabriel Bercu1Christophe Chesneau2Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, Irbid 21110, JordanDepartment of Mathematics and Computer Sciences, “Dunǎrea de Jos” University of Galati, 111, Domneascǎ Street, 800201 Galati, RomaniaDepartment of Mathematics, LMNO, CNRS-Université de Caen, Campus II, Science 3, 14032 Caen, FranceIn this work, some numerical radius inequalities based on the recent Dragomir extension of Furuta’s inequality are obtained. Some particular cases are also provided. Among others, the celebrated Kittaneh inequality reads: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mfenced open="(" close=")"><mi>T</mi></mfenced><mo>≤</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced separators="" open="∥" close="∥"><mfenced open="|" close="|"><mi>T</mi></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><msup><mi>T</mi><mo>*</mo></msup></mfenced></mfenced></mrow></semantics></math></inline-formula>. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mfenced open="(" close=")"><mi>T</mi></mfenced><mo>≤</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced separators="" open="∥" close="∥"><mfenced open="|" close="|"><mi>T</mi></mfenced><mo>+</mo><mfenced separators="" open="|" close="|"><msup><mi>T</mi><mo>*</mo></msup></mfenced></mfenced><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><munder><mo movablelimits="false" form="prefix">inf</mo><mrow><mfenced open="∥" close="∥"><mi>x</mi></mfenced><mo>=</mo><mn>1</mn></mrow></munder><msup><mfenced separators="" open="(" close=")"><msup><mfenced separators="" open="⟨" close="⟩"><mrow><mfenced open="|" close="|"><mi>T</mi></mfenced><mi>x</mi><mo>,</mo><mi>x</mi></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mo>−</mo><msup><mfenced separators="" open="⟨" close="⟩"><mrow><mfenced separators="" open="|" close="|"><msup><mi>T</mi><mo>*</mo></msup></mfenced><mi>x</mi><mo>,</mo><mi>x</mi></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mfenced><mn>2</mn></msup></mrow></semantics></math></inline-formula>, which improves on the Kittaneh inequality for symmetric and non-symmetric Hilbert space operators. Other related improvements to well-known inequalities in literature are also provided.https://www.mdpi.com/2073-8994/14/7/1432mixed Schwarz inequalityFuruta inequalitynumerical radius inequalities
spellingShingle Mohammad W. Alomari
Gabriel Bercu
Christophe Chesneau
On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities
Symmetry
mixed Schwarz inequality
Furuta inequality
numerical radius inequalities
title On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities
title_full On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities
title_fullStr On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities
title_full_unstemmed On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities
title_short On the Dragomir Extension of Furuta’s Inequality and Numerical Radius Inequalities
title_sort on the dragomir extension of furuta s inequality and numerical radius inequalities
topic mixed Schwarz inequality
Furuta inequality
numerical radius inequalities
url https://www.mdpi.com/2073-8994/14/7/1432
work_keys_str_mv AT mohammadwalomari onthedragomirextensionoffurutasinequalityandnumericalradiusinequalities
AT gabrielbercu onthedragomirextensionoffurutasinequalityandnumericalradiusinequalities
AT christophechesneau onthedragomirextensionoffurutasinequalityandnumericalradiusinequalities