Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion

We establish the existence and uniqueness of weak solutions to the parabolic system with nonstandard growth condition and cross diffusion, $$\displaylines{ \partial_tu-\text{div}a(x,t,\nabla u)) =\text{div}|F|^{p(x,t)-2}F),\cr \partial_tv-\text{div}a(x,t,\nabla v))=\delta\Delta u, }$$ where...

Full description

Bibliographic Details
Main Authors: Gurusamy Arumugam, Andre H. Erhardt
Format: Article
Language:English
Published: Texas State University 2020-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2020/123/abstr.html
_version_ 1818677315979182080
author Gurusamy Arumugam
Andre H. Erhardt
author_facet Gurusamy Arumugam
Andre H. Erhardt
author_sort Gurusamy Arumugam
collection DOAJ
description We establish the existence and uniqueness of weak solutions to the parabolic system with nonstandard growth condition and cross diffusion, $$\displaylines{ \partial_tu-\text{div}a(x,t,\nabla u)) =\text{div}|F|^{p(x,t)-2}F),\cr \partial_tv-\text{div}a(x,t,\nabla v))=\delta\Delta u, }$$ where $\delta\ge0$ and $\partial_tu,~\partial_tv$ denote the partial derivative of u and v with respect to the time variable t, while $\nabla u$ and $\nabla v$ denote the one with respect to the spatial variable x. Moreover, the vector field $a(x,t,\cdot)$ satisfies certain nonstandard p(x,t) growth, monotonicity and coercivity conditions.
first_indexed 2024-12-17T08:57:26Z
format Article
id doaj.art-2a22d86f96ef4341b5947bc41fbd2bde
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-17T08:57:26Z
publishDate 2020-12-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-2a22d86f96ef4341b5947bc41fbd2bde2022-12-21T21:55:54ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912020-12-012020123,113Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusionGurusamy Arumugam0Andre H. Erhardt1 Indian Inst. of Technology Gandhinagar, Gujarat, India Univ. of Oslo, Oslo, Norway We establish the existence and uniqueness of weak solutions to the parabolic system with nonstandard growth condition and cross diffusion, $$\displaylines{ \partial_tu-\text{div}a(x,t,\nabla u)) =\text{div}|F|^{p(x,t)-2}F),\cr \partial_tv-\text{div}a(x,t,\nabla v))=\delta\Delta u, }$$ where $\delta\ge0$ and $\partial_tu,~\partial_tv$ denote the partial derivative of u and v with respect to the time variable t, while $\nabla u$ and $\nabla v$ denote the one with respect to the spatial variable x. Moreover, the vector field $a(x,t,\cdot)$ satisfies certain nonstandard p(x,t) growth, monotonicity and coercivity conditions.http://ejde.math.txstate.edu/Volumes/2020/123/abstr.htmlnonlinear parabolic problemnonstandard growthcross diffusion
spellingShingle Gurusamy Arumugam
Andre H. Erhardt
Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion
Electronic Journal of Differential Equations
nonlinear parabolic problem
nonstandard growth
cross diffusion
title Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion
title_full Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion
title_fullStr Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion
title_full_unstemmed Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion
title_short Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion
title_sort existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion
topic nonlinear parabolic problem
nonstandard growth
cross diffusion
url http://ejde.math.txstate.edu/Volumes/2020/123/abstr.html
work_keys_str_mv AT gurusamyarumugam existenceanduniquenessofweaksolutionstoparabolicproblemswithnonstandardgrowthandcrossdiffusion
AT andreherhardt existenceanduniquenessofweaksolutionstoparabolicproblemswithnonstandardgrowthandcrossdiffusion