Photonic entanglement during a zero-g flight

Quantum technologies have matured to the point that we can test fundamental quantum phenomena under extreme conditions. Specifically, entanglement, a cornerstone of modern quantum information theory, can be robustly produced and verified in various adverse environments. We take these tests further a...

Full description

Bibliographic Details
Main Authors: Julius Arthur Bittermann, Lukas Bulla, Sebastian Ecker, Sebastian Philipp Neumann, Matthias Fink, Martin Bohmann, Nicolai Friis, Marcus Huber, Rupert Ursin
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2024-02-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2024-02-15-1256/pdf/
Description
Summary:Quantum technologies have matured to the point that we can test fundamental quantum phenomena under extreme conditions. Specifically, entanglement, a cornerstone of modern quantum information theory, can be robustly produced and verified in various adverse environments. We take these tests further and implement a high-quality Bell experiment during a parabolic flight, transitioning from microgravity to hypergravity of 1.8 g while continuously observing Bell violation, with Bell-CHSH parameters between $S=-2.6202$ and $-2.7323$, an average of $\overline{S} = -2.680$, and average standard deviation of $\overline{\Delta S} = 0.014$. This violation is unaffected both by uniform and non-uniform acceleration. This experiment demonstrates the stability of current quantum communication platforms for space-based applications and adds an important reference point for testing the interplay of non-inertial motion and quantum information.
ISSN:2521-327X