Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components.

Micro-CT imaging can be used as an effective method for non-destructive testing (NDT) of metal 3D printed parts-including titanium biomedical components fabricated using laser powder-bed-fusion (LPBF). Unfortunately, the cost of commercially available micro-CT scanners renders routine NDT for biomed...

Full description

Bibliographic Details
Main Authors: Santiago Fabian Cobos, Christopher James Norley, Steven Ingo Pollmann, David Wayne Holdsworth
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0275732
_version_ 1811182175720046592
author Santiago Fabian Cobos
Christopher James Norley
Steven Ingo Pollmann
David Wayne Holdsworth
author_facet Santiago Fabian Cobos
Christopher James Norley
Steven Ingo Pollmann
David Wayne Holdsworth
author_sort Santiago Fabian Cobos
collection DOAJ
description Micro-CT imaging can be used as an effective method for non-destructive testing (NDT) of metal 3D printed parts-including titanium biomedical components fabricated using laser powder-bed-fusion (LPBF). Unfortunately, the cost of commercially available micro-CT scanners renders routine NDT for biomedical applications prohibitively expensive. This study describes the design, manufacturing, and implementation of a cost-effective scanner tailored for NDT of medium-size titanium 3D printed biomedical components. The main elements of the scanner; which include a low-energy (80 kVp) portable x-ray unit, and a low-cost lens-coupled detector; can be acquired with a budget less than $ 11000 USD. The low-cost detector system uses a rare-earth phosphor screen, lens-coupled to a dSLR camera (Nikon D800) in a front-lit tilted configuration. This strategy takes advantage of the improved light-sensitivity of modern full-frame CMOS camera sensors and minimizes source-to-detector distance to maximize x-ray flux. The imaging performance of the system is characterized using a comprehensive CT quality-assurance phantom, and two titanium 3D-printed test specimens. Results show that the cost-effective scanner can survey the porosity and cracks in titanium parts with thicknesses of up to 13 mm of solid metal. Quantitatively, the scanner produced geometrically stable reconstructions, with a voxel size of 118 μm, and noise levels under 55 HU. The cost-effective scanner was able to estimate the porosity of a 17 mm diameter titanium 3D-printed cylindrical lattice structure, with a 0.3% relative error. The proposed scanner will facilitate the implementation of titanium LPBF-printed components for biomedical applications by incorporating routine cost-effective NDT as part of the process control and validation steps of medical-device quality-management systems. By reducing the cost of the x-ray detector and shielding, the scan cost will be commensurate with the overall cost of the validated component.
first_indexed 2024-04-11T09:27:38Z
format Article
id doaj.art-2a600177f274432d96967c0705bd142f
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-04-11T09:27:38Z
publishDate 2022-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-2a600177f274432d96967c0705bd142f2022-12-22T04:31:58ZengPublic Library of Science (PLoS)PLoS ONE1932-62032022-01-011710e027573210.1371/journal.pone.0275732Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components.Santiago Fabian CobosChristopher James NorleySteven Ingo PollmannDavid Wayne HoldsworthMicro-CT imaging can be used as an effective method for non-destructive testing (NDT) of metal 3D printed parts-including titanium biomedical components fabricated using laser powder-bed-fusion (LPBF). Unfortunately, the cost of commercially available micro-CT scanners renders routine NDT for biomedical applications prohibitively expensive. This study describes the design, manufacturing, and implementation of a cost-effective scanner tailored for NDT of medium-size titanium 3D printed biomedical components. The main elements of the scanner; which include a low-energy (80 kVp) portable x-ray unit, and a low-cost lens-coupled detector; can be acquired with a budget less than $ 11000 USD. The low-cost detector system uses a rare-earth phosphor screen, lens-coupled to a dSLR camera (Nikon D800) in a front-lit tilted configuration. This strategy takes advantage of the improved light-sensitivity of modern full-frame CMOS camera sensors and minimizes source-to-detector distance to maximize x-ray flux. The imaging performance of the system is characterized using a comprehensive CT quality-assurance phantom, and two titanium 3D-printed test specimens. Results show that the cost-effective scanner can survey the porosity and cracks in titanium parts with thicknesses of up to 13 mm of solid metal. Quantitatively, the scanner produced geometrically stable reconstructions, with a voxel size of 118 μm, and noise levels under 55 HU. The cost-effective scanner was able to estimate the porosity of a 17 mm diameter titanium 3D-printed cylindrical lattice structure, with a 0.3% relative error. The proposed scanner will facilitate the implementation of titanium LPBF-printed components for biomedical applications by incorporating routine cost-effective NDT as part of the process control and validation steps of medical-device quality-management systems. By reducing the cost of the x-ray detector and shielding, the scan cost will be commensurate with the overall cost of the validated component.https://doi.org/10.1371/journal.pone.0275732
spellingShingle Santiago Fabian Cobos
Christopher James Norley
Steven Ingo Pollmann
David Wayne Holdsworth
Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components.
PLoS ONE
title Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components.
title_full Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components.
title_fullStr Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components.
title_full_unstemmed Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components.
title_short Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components.
title_sort cost effective micro ct system for non destructive testing of titanium 3d printed medical components
url https://doi.org/10.1371/journal.pone.0275732
work_keys_str_mv AT santiagofabiancobos costeffectivemicroctsystemfornondestructivetestingoftitanium3dprintedmedicalcomponents
AT christopherjamesnorley costeffectivemicroctsystemfornondestructivetestingoftitanium3dprintedmedicalcomponents
AT steveningopollmann costeffectivemicroctsystemfornondestructivetestingoftitanium3dprintedmedicalcomponents
AT davidwayneholdsworth costeffectivemicroctsystemfornondestructivetestingoftitanium3dprintedmedicalcomponents