Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon (Salmo salar)
Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-04-01
|
Series: | Frontiers in Immunology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fimmu.2023.1187209/full |
_version_ | 1827958276550033408 |
---|---|
author | Danixa Martínez Danixa Martínez Ricardo Oyarzún-Salazar Ana María Quilapi José Coronado Ricardo Enriquez Carolina Vargas-Lagos Cristian Oliver Natacha Santibañez Marcos Godoy Marcos Godoy José Luis Muñoz Luis Vargas-Chacoff Luis Vargas-Chacoff Luis Vargas-Chacoff Alex Romero Alex Romero |
author_facet | Danixa Martínez Danixa Martínez Ricardo Oyarzún-Salazar Ana María Quilapi José Coronado Ricardo Enriquez Carolina Vargas-Lagos Cristian Oliver Natacha Santibañez Marcos Godoy Marcos Godoy José Luis Muñoz Luis Vargas-Chacoff Luis Vargas-Chacoff Luis Vargas-Chacoff Alex Romero Alex Romero |
author_sort | Danixa Martínez |
collection | DOAJ |
description | Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism. |
first_indexed | 2024-04-09T15:33:03Z |
format | Article |
id | doaj.art-2a622b75bff6476dae86baa3044176db |
institution | Directory Open Access Journal |
issn | 1664-3224 |
language | English |
last_indexed | 2024-04-09T15:33:03Z |
publishDate | 2023-04-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Immunology |
spelling | doaj.art-2a622b75bff6476dae86baa3044176db2023-04-28T04:45:31ZengFrontiers Media S.A.Frontiers in Immunology1664-32242023-04-011410.3389/fimmu.2023.11872091187209Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon (Salmo salar)Danixa Martínez0Danixa Martínez1Ricardo Oyarzún-Salazar2Ana María Quilapi3José Coronado4Ricardo Enriquez5Carolina Vargas-Lagos6Cristian Oliver7Natacha Santibañez8Marcos Godoy9Marcos Godoy10José Luis Muñoz11Luis Vargas-Chacoff12Luis Vargas-Chacoff13Luis Vargas-Chacoff14Alex Romero15Alex Romero16Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, ChileLaboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, ChileLaboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, ChileEscuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, ChileLaboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, ChileLaboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, ChileEscuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, ChileLaboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, ChileLaboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, ChileLaboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, ChileCentro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, ChileCentro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, ChileInstituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, ChileCentro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, ChileMillennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), University Austral of Chile, Valdivia, ChileLaboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, ChileCentro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, ChileNutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism.https://www.frontiersin.org/articles/10.3389/fimmu.2023.1187209/fullnutritional immunityPiscirickettsia salmonisSalmo salarironzincmanganese |
spellingShingle | Danixa Martínez Danixa Martínez Ricardo Oyarzún-Salazar Ana María Quilapi José Coronado Ricardo Enriquez Carolina Vargas-Lagos Cristian Oliver Natacha Santibañez Marcos Godoy Marcos Godoy José Luis Muñoz Luis Vargas-Chacoff Luis Vargas-Chacoff Luis Vargas-Chacoff Alex Romero Alex Romero Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon (Salmo salar) Frontiers in Immunology nutritional immunity Piscirickettsia salmonis Salmo salar iron zinc manganese |
title | Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon (Salmo salar) |
title_full | Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon (Salmo salar) |
title_fullStr | Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon (Salmo salar) |
title_full_unstemmed | Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon (Salmo salar) |
title_short | Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon (Salmo salar) |
title_sort | live and inactivated piscirickettsia salmonis activated nutritional immunity in atlantic salmon salmo salar |
topic | nutritional immunity Piscirickettsia salmonis Salmo salar iron zinc manganese |
url | https://www.frontiersin.org/articles/10.3389/fimmu.2023.1187209/full |
work_keys_str_mv | AT danixamartinez liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT danixamartinez liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT ricardooyarzunsalazar liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT anamariaquilapi liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT josecoronado liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT ricardoenriquez liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT carolinavargaslagos liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT cristianoliver liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT natachasantibanez liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT marcosgodoy liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT marcosgodoy liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT joseluismunoz liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT luisvargaschacoff liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT luisvargaschacoff liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT luisvargaschacoff liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT alexromero liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar AT alexromero liveandinactivatedpiscirickettsiasalmonisactivatednutritionalimmunityinatlanticsalmonsalmosalar |