On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$
In this article, we consider and discuss some properties of the positive solutions to the following rational nonlinear DE ${x_{n+1}}=\frac{{\alpha { x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}} \left( {{x_{n-k}}+{x_{n-l}}}\right) }}$, $n=0,1,...,$ where the parameters...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Emrah Evren KARA
2022-12-01
|
Series: | Communications in Advanced Mathematical Sciences |
Subjects: | |
Online Access: | https://dergipark.org.tr/tr/download/article-file/2682359 |
_version_ | 1797294120372273152 |
---|---|
author | Mohamed Abd El-moneam |
author_facet | Mohamed Abd El-moneam |
author_sort | Mohamed Abd El-moneam |
collection | DOAJ |
description | In this article, we consider and discuss some properties of the positive solutions to the following rational nonlinear DE ${x_{n+1}}=\frac{{\alpha { x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}} \left( {{x_{n-k}}+{x_{n-l}}}\right) }}$, $n=0,1,...,$ where the parameters $ \alpha ,\beta ,\gamma ,\delta ,{\eta }\in (0,\infty )$, while $m,k,l$ are positive integers, such that $m |
first_indexed | 2024-03-07T21:25:37Z |
format | Article |
id | doaj.art-2a634ac378e04e55a42a292c826f4e18 |
institution | Directory Open Access Journal |
issn | 2651-4001 |
language | English |
last_indexed | 2024-03-07T21:25:37Z |
publishDate | 2022-12-01 |
publisher | Emrah Evren KARA |
record_format | Article |
series | Communications in Advanced Mathematical Sciences |
spelling | doaj.art-2a634ac378e04e55a42a292c826f4e182024-02-27T04:38:36ZengEmrah Evren KARACommunications in Advanced Mathematical Sciences2651-40012022-12-015418919810.33434/cams.11828611225On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$Mohamed Abd El-moneam0Mathematics Department, Faculty of Science, Jazan University, Kingdom of Saudi Arabia.In this article, we consider and discuss some properties of the positive solutions to the following rational nonlinear DE ${x_{n+1}}=\frac{{\alpha { x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}} \left( {{x_{n-k}}+{x_{n-l}}}\right) }}$, $n=0,1,...,$ where the parameters $ \alpha ,\beta ,\gamma ,\delta ,{\eta }\in (0,\infty )$, while $m,k,l$ are positive integers, such that $mhttps://dergipark.org.tr/tr/download/article-file/2682359difference equationsqualitative properties of solutions of difference equationsrational difference equationsglobally asymptotically stable\ prime period two solution.equilibrium |
spellingShingle | Mohamed Abd El-moneam On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$ Communications in Advanced Mathematical Sciences difference equations qualitative properties of solutions of difference equations rational difference equations globally asymptotically stable \ prime period two solution. equilibrium |
title | On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$ |
title_full | On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$ |
title_fullStr | On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$ |
title_full_unstemmed | On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$ |
title_short | On the Global of the Difference Equation ${x_{n+1}}=\frac{{\alpha {x_{n-m}+\eta {x_{n-k}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$ |
title_sort | on the global of the difference equation x n 1 frac alpha x n m eta x n k delta x n beta gamma x n k x n l left x n k x n l right |
topic | difference equations qualitative properties of solutions of difference equations rational difference equations globally asymptotically stable \ prime period two solution. equilibrium |
url | https://dergipark.org.tr/tr/download/article-file/2682359 |
work_keys_str_mv | AT mohamedabdelmoneam ontheglobalofthedifferenceequationxn1fracalphaxnmetaxnkdeltaxnbetagammaxnkxnlleftxnkxnlright |