Electrical, photoelectrical and morphological properties of ZnO nanofiber networks grown on SiO2 and on Si nanowires

ZnO nanofibre networks (NFNs) were grown by vapour transport method on Si-based substrates. One type of substrate was SiO2 thermally grown on Si and another consisted of a Si wafer onto which Si nanowires (NWs) had been grown having Au nanoparticles catalysts. The ZnO-NFN morphology was observed by...

Full description

Bibliographic Details
Main Authors: Nadia Celeste Vega, Monica Tirado, David Comedi, Andres Rodriguez, Tomas Rodriguez, Gareth M. Hughes, Chris R. M. Grovenor, Fernando Audebert
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2013-06-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000300007
Description
Summary:ZnO nanofibre networks (NFNs) were grown by vapour transport method on Si-based substrates. One type of substrate was SiO2 thermally grown on Si and another consisted of a Si wafer onto which Si nanowires (NWs) had been grown having Au nanoparticles catalysts. The ZnO-NFN morphology was observed by scanning electron microscopy on samples grown at 600 °C and 720 °C substrate temperature, while an focused ion beam was used to study the ZnO NFN/Si NWs/Si and ZnO NFN/SiO2 interfaces. Photoluminescence, electrical conductance and photoconductance of ZnO-NFN was studied for the sample grown on SiO2. The photoluminescence spectra show strong peaks due to exciton recombination and lattice defects. The ZnO-NFN presents quasi-persistent photoconductivity effects and ohmic I-V characteristics which become nonlinear and hysteretic as the applied voltage is increased. The electrical conductance as a function of temperature can be described by a modified three dimensional variable hopping model with nanometer-ranged typical hopping distances.
ISSN:1516-1439