Anatomy and systematics of the sauropodomorph Sarahsaurus aurifontanalis from the Early Jurassic Kayenta Formation.

Sarahsaurus aurifontanalis, from the Kayenta Formation of Arizona, is one of only three sauropodomorph dinosaurs known from the Early Jurassic of North America. It joins Anchisaurus polyzelus, from the older Portland Formation of the Hartford Basin, and Seitaad reussi, from the younger Navajo Sandst...

Full description

Bibliographic Details
Main Authors: Adam D Marsh, Timothy B Rowe
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6179219?pdf=render
Description
Summary:Sarahsaurus aurifontanalis, from the Kayenta Formation of Arizona, is one of only three sauropodomorph dinosaurs known from the Early Jurassic of North America. It joins Anchisaurus polyzelus, from the older Portland Formation of the Hartford Basin, and Seitaad reussi, from the younger Navajo Sandstone of Utah, in representing the oldest North American sauropodomorphs. If it is true that sauropodomorphs were absent from North America during the Late Triassic, the relationship among these three dinosaurs offers a test of the mechanisms that drove recovery in North American biodiversity following the end-Triassic extinction event. Here we provide the first thorough description of Sarahsaurus aurifontanalis based on completed preparation and computed tomographic imaging of the holotype and referred specimens. With new anatomical data, our phylogenetic analysis supports the conclusion that Sarahsaurus aurifontanalis is nested within the primarily Gondwanan clade Massospondylidae, while agreeing with previous analyses that the three North American sauropodomorphs do not themselves form an exclusive clade. A revised diagnosis and more thorough understanding of the anatomy of Sarahsaurus aurifontanalis support the view that independent dispersal events were at least partly responsible for the recovery in North American vertebrate diversity following a major extinction event.
ISSN:1932-6203