Stability of Solutions to Systems of Nonlinear Differential Equations with Discontinuous Right-Hand Sides: Applications to Hopfield Artificial Neural Networks

In this paper, we study the stability of solutions to systems of differential equations with discontinuous right-hand sides. We have investigated nonlinear and linear equations. Stability sufficient conditions for linear equations are expressed as a logarithmic norm for coefficients of systems of eq...

Full description

Bibliographic Details
Main Authors: Ilya Boykov, Vladimir Roudnev, Alla Boykova
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/9/1524
Description
Summary:In this paper, we study the stability of solutions to systems of differential equations with discontinuous right-hand sides. We have investigated nonlinear and linear equations. Stability sufficient conditions for linear equations are expressed as a logarithmic norm for coefficients of systems of equations. Stability sufficient conditions for nonlinear equations are expressed as the logarithmic norm of the Jacobian of the right-hand side of the system of equations. Sufficient conditions for the stability of solutions of systems of differential equations expressed in terms of logarithmic norms of the right-hand sides of equations (for systems of linear equations) and the Jacobian of right-hand sides (for nonlinear equations) have the following advantages: (1) in investigating stability in different metrics from the same standpoints, we have obtained a set of sufficient conditions; (2) sufficient conditions are easily expressed; (3) robustness areas of systems are easily determined with respect to the variation of their parameters; (4) in case of impulse action, information on moments of impact distribution is not required; (5) a method to obtain sufficient conditions of stability is extended to other definitions of stability (in particular, to p-moment stability). The obtained sufficient conditions are used to study Hopfield neural networks with discontinuous synapses and discontinuous activation functions.
ISSN:2227-7390