An Integrated Use of GIS, Geostatistical and Map Overlay Techniques for Spatio-Temporal Variability Analysis of Groundwater Quality and Level in the Punjab Province of Pakistan, South Asia

The rapidly changing climatic scenario is demanding periodic evaluation of groundwater quality at the temporal and spatial scale in any region for its effectual management. The statistical, geographic information system (GIS), geostatistical, and map overlay approaches were applied for investigating...

Full description

Bibliographic Details
Main Authors: Huzaifa Shahzad, Hafiz Umar Farid, Zahid Mahmood Khan, Muhammad Naveed Anjum, Ijaz Ahmad, Xi Chen, Perviaz Sakindar, Muhammad Mubeen, Matlob Ahmad, Aminjon Gulakhmadov
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/12/3555
Description
Summary:The rapidly changing climatic scenario is demanding periodic evaluation of groundwater quality at the temporal and spatial scale in any region for its effectual management. The statistical, geographic information system (GIS), geostatistical, and map overlay approaches were applied for investigating the spatio-temporal variation in groundwater quality and level data of 242 monitoring wells in Punjab, Pakistan during pre-monsoon and post-monsoon seasons of the years 2015 and 2016. The analysis indicated the higher variation in data for both the seasons (pre-monsoon and post-monsoon) as coefficient of variation (CV) values were found in the range of 84–175% for groundwater quality parameters. Based on the <i>t</i>-test values, the marginal improvement in groundwater electrical conductivity (EC), sodium absorption ratio (SAR) and residual sodium carbonate (RSC) and decrease in groundwater level (GWL) were observed in 2016 as compared to 2015 (<i>p</i> = 0.05). The spatial distribution analysis of groundwater EC, SAR and RSC indicated that the groundwater quality was unfit for irrigation in the lower south-east part of the study area. The groundwater level (GWL) was also higher in that part of the study area during the pre-monsoon and post-monsoon seasons in 2015 and 2016. The overlay analysis also indicated that the groundwater EC, RSC and GWL values were higher in south-east parts of the study area during pre-monsoon and post-monsoon seasons of 2015 and 2016. Hence, there is an instant need to apply groundwater management practices in the rest of the region (especially in the lower south-east part) to overcome the future degradation of groundwater quality.
ISSN:2073-4441