Investigation of solar cell performance using multilayer thin film structure (SiO2/Si3N4) and grating

Thin film silicon solar cells are the better choice due to their low cost as compared to the crystalline solar cells. However, thin film silicon solar cells are suffering from a problem of weak absorption of incident light and hence, light trapping mechanism is essential for the harvesting of maximu...

Full description

Bibliographic Details
Main Authors: R.S. Dubey, K. Jhansirani, Shyam Singh
Format: Article
Language:English
Published: Elsevier 2017-01-01
Series:Results in Physics
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379716304946
Description
Summary:Thin film silicon solar cells are the better choice due to their low cost as compared to the crystalline solar cells. However, thin film silicon solar cells are suffering from a problem of weak absorption of incident light and hence, light trapping mechanism is essential for the harvesting of maximum solar radiation. In this paper, we present the performance of solar cell using an efficient back reflector composed of multilayer thin film (SiO2/Si3N4) and a diffraction grating. The use of a back reflector showed enhanced light absorption due to the folding of unabsorbed light coming to it after crossing the active region in a wide wavelength range. Further, the effect of active layer thickness and grating height were also discussed for the optimal performance of the solar cell. In the case of magnetic transverse mode, a relative enhancement in cell efficiency about 79 and 21% respectively have been observed with respect to a planar and SC4 solar cells. Keywords: Dielectric multilayer film structure, Bragg reflectors, Reflection, Thin film silicon solar cells, Absorption
ISSN:2211-3797