Existence theory of fractional order three-dimensional differential system at resonance

<p>This paper deals with three-dimensional differential system of nonlinear fractional order problem</p> <p class="disp_formula"> $ \begin{align*} D^{\alpha}_{0^{+}}\upsilon(\varrho) = f(\varrho,\omega(\varrho),\omega^{\prime}(\varrho),\omega^{\prime\prime}(\varrho),...

Full description

Bibliographic Details
Main Authors: M. Sathish Kumar, M. Deepa, J Kavitha, V. Sadhasivam
Format: Article
Language:English
Published: AIMS Press 2023-06-01
Series:Mathematical Modelling and Control
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mmc.2023012?viewType=HTML
_version_ 1797690909593174016
author M. Sathish Kumar
M. Deepa
J Kavitha
V. Sadhasivam
author_facet M. Sathish Kumar
M. Deepa
J Kavitha
V. Sadhasivam
author_sort M. Sathish Kumar
collection DOAJ
description <p>This paper deals with three-dimensional differential system of nonlinear fractional order problem</p> <p class="disp_formula"> $ \begin{align*} D^{\alpha}_{0^{+}}\upsilon(\varrho) = f(\varrho,\omega(\varrho),\omega^{\prime}(\varrho),\omega^{\prime\prime}(\varrho),...,\omega^{(n-1)}(\varrho)), \; \varrho \in (0,1),\\ D^{\beta}_{0^{+}}\nu(\varrho) = g(\varrho, \upsilon(\varrho),\upsilon^{\prime}(\varrho),\upsilon^{\prime\prime}(\varrho),...,\upsilon^{(n-1)}(\varrho)), \; \varrho \in (0,1),\\ D^{\gamma}_{0^{+}}\omega(\varrho) = h(\varrho,\nu(\varrho),\nu^{\prime}(\varrho),\nu^{\prime\prime}(\varrho),...,\nu^{(n-1)}(\varrho)), \; \varrho \in (0,1), \end{align*} $ </p> <p>with the boundary conditions,</p> <p class="disp_formula">$ \begin{align*} \upsilon(0) = \upsilon^{\prime}(0) = ... = \upsilon^{(n-2)}(0) = 0,\; \upsilon^{(n-1)}(0) = \upsilon^{(n-1)}(1),\\ \nu(0) = \nu^{\prime}(0) = ... = \nu^{(n-2)}(0) = 0,\; \nu^{(n-1)}(0) = \nu^{(n-1)}(1),\\ \omega(0) = \omega^{\prime}(0) = ... = \omega^{(n-2)}(0) = 0,\; \omega^{(n-1)}(0) = \omega^{(n-1)}(1), \end{align*} $</p> <p>where $ D^{\alpha}_{0^{+}}, D^{\beta}_{0^{+}}, D^{\gamma}_{0^{+}} $ are the standard Caputo fractional derivative, $ n-1 &lt; \alpha, \beta, \gamma \leq n, \; n \geq 2 $ and we derive sufficient conditions for the existence of solutions to the fraction order three-dimensional differential system with boundary value problems via Mawhin's coincidence degree theory, and some new existence results are obtained. Finally, an illustrative example is presented.</p>
first_indexed 2024-03-12T02:06:54Z
format Article
id doaj.art-2abac944952848e4b115370e11a06658
institution Directory Open Access Journal
issn 2767-8946
language English
last_indexed 2024-03-12T02:06:54Z
publishDate 2023-06-01
publisher AIMS Press
record_format Article
series Mathematical Modelling and Control
spelling doaj.art-2abac944952848e4b115370e11a066582023-09-07T03:47:27ZengAIMS PressMathematical Modelling and Control2767-89462023-06-013212713810.3934/mmc.2023012Existence theory of fractional order three-dimensional differential system at resonanceM. Sathish Kumar0M. Deepa1J Kavitha2V. Sadhasivam 31. Department of Mathematics, Paavai Engineering College (Autonomous), Namakkal - 637 018, Tamil Nadu, India2. Department of Mathematics, Pavai Arts and Science College for Women, Namakkal - 637 401, Tamil Nadu, India3. Department of Mathematics, Sona College of Technology (Autonomous), Salem - 636 005, Tamil Nadu, India4. Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College, Rasipuram - 637 401, Namakkal, Tamil Nadu, India<p>This paper deals with three-dimensional differential system of nonlinear fractional order problem</p> <p class="disp_formula"> $ \begin{align*} D^{\alpha}_{0^{+}}\upsilon(\varrho) = f(\varrho,\omega(\varrho),\omega^{\prime}(\varrho),\omega^{\prime\prime}(\varrho),...,\omega^{(n-1)}(\varrho)), \; \varrho \in (0,1),\\ D^{\beta}_{0^{+}}\nu(\varrho) = g(\varrho, \upsilon(\varrho),\upsilon^{\prime}(\varrho),\upsilon^{\prime\prime}(\varrho),...,\upsilon^{(n-1)}(\varrho)), \; \varrho \in (0,1),\\ D^{\gamma}_{0^{+}}\omega(\varrho) = h(\varrho,\nu(\varrho),\nu^{\prime}(\varrho),\nu^{\prime\prime}(\varrho),...,\nu^{(n-1)}(\varrho)), \; \varrho \in (0,1), \end{align*} $ </p> <p>with the boundary conditions,</p> <p class="disp_formula">$ \begin{align*} \upsilon(0) = \upsilon^{\prime}(0) = ... = \upsilon^{(n-2)}(0) = 0,\; \upsilon^{(n-1)}(0) = \upsilon^{(n-1)}(1),\\ \nu(0) = \nu^{\prime}(0) = ... = \nu^{(n-2)}(0) = 0,\; \nu^{(n-1)}(0) = \nu^{(n-1)}(1),\\ \omega(0) = \omega^{\prime}(0) = ... = \omega^{(n-2)}(0) = 0,\; \omega^{(n-1)}(0) = \omega^{(n-1)}(1), \end{align*} $</p> <p>where $ D^{\alpha}_{0^{+}}, D^{\beta}_{0^{+}}, D^{\gamma}_{0^{+}} $ are the standard Caputo fractional derivative, $ n-1 &lt; \alpha, \beta, \gamma \leq n, \; n \geq 2 $ and we derive sufficient conditions for the existence of solutions to the fraction order three-dimensional differential system with boundary value problems via Mawhin's coincidence degree theory, and some new existence results are obtained. Finally, an illustrative example is presented.</p>https://www.aimspress.com/article/doi/10.3934/mmc.2023012?viewType=HTMLfractional differential equationcoincidence degree theoryresonance
spellingShingle M. Sathish Kumar
M. Deepa
J Kavitha
V. Sadhasivam
Existence theory of fractional order three-dimensional differential system at resonance
Mathematical Modelling and Control
fractional differential equation
coincidence degree theory
resonance
title Existence theory of fractional order three-dimensional differential system at resonance
title_full Existence theory of fractional order three-dimensional differential system at resonance
title_fullStr Existence theory of fractional order three-dimensional differential system at resonance
title_full_unstemmed Existence theory of fractional order three-dimensional differential system at resonance
title_short Existence theory of fractional order three-dimensional differential system at resonance
title_sort existence theory of fractional order three dimensional differential system at resonance
topic fractional differential equation
coincidence degree theory
resonance
url https://www.aimspress.com/article/doi/10.3934/mmc.2023012?viewType=HTML
work_keys_str_mv AT msathishkumar existencetheoryoffractionalorderthreedimensionaldifferentialsystematresonance
AT mdeepa existencetheoryoffractionalorderthreedimensionaldifferentialsystematresonance
AT jkavitha existencetheoryoffractionalorderthreedimensionaldifferentialsystematresonance
AT vsadhasivam existencetheoryoffractionalorderthreedimensionaldifferentialsystematresonance