Generating Function Approach to the Derivation of Higher-Order Iterative Methods for Solving Nonlinear Equations
In this paper we propose a generating function method for constructing new two and three-point iterations with p (p = 4, 8) order of convergence. This approach allows us to derive a new family of optimal order iterative methods that include well known methods as special cases. Necessary and sufficie...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://doi.org/10.1051/epjconf/201817303024 |
Summary: | In this paper we propose a generating function method for constructing new two and three-point iterations with p (p = 4, 8) order of convergence. This approach allows us to derive a new family of optimal order iterative methods that include well known methods as special cases. Necessary and sufficient conditions for p-th (p = 4, 8) order convergence of the proposed iterations are given in terms of parameters τn and αn. We also propose some generating functions for τn and αn. We develop a unified representation of all optimal eighth-order methods. The order of convergence of the proposed methods is confirmed by numerical experiments. |
---|---|
ISSN: | 2100-014X |