Spectral–Spatial Generative Adversarial Network for Super-Resolution Land Cover Mapping With Multispectral Remotely Sensed Imagery
Super-resolution mapping (SRM) can effectively predict the spatial distribution of land cover classes within mixed pixels at a higher spatial resolution than the original remotely sensed imagery. The uncertainty of land cover fraction errors within mixed pixels is one of the most important factors a...
Prif Awduron: | Cheng Shang, Shan Jiang, Feng Ling, Xiaodong Li, Yadong Zhou, Yun Du |
---|---|
Fformat: | Erthygl |
Iaith: | English |
Cyhoeddwyd: |
IEEE
2023-01-01
|
Cyfres: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Pynciau: | |
Mynediad Ar-lein: | https://ieeexplore.ieee.org/document/9982425/ |
Eitemau Tebyg
-
Lightweight Super-Resolution Generative Adversarial Network for SAR Images
gan: Nana Jiang, et al.
Cyhoeddwyd: (2024-05-01) -
An Iris Image Super-Resolution Model Based on Swin Transformer and Generative Adversarial Network
gan: Hexin Lu, et al.
Cyhoeddwyd: (2024-02-01) -
Small Object Detection in Remote Sensing Images Based on Super-Resolution with Auxiliary Generative Adversarial Networks
gan: Luc Courtrai, et al.
Cyhoeddwyd: (2020-09-01) -
Digital Surface Model Super-Resolution by Integrating High-Resolution Remote Sensing Imagery Using Generative Adversarial Networks
gan: Guihou Sun, et al.
Cyhoeddwyd: (2024-01-01) -
Super-Resolution of Sentinel-2 Imagery Using Generative Adversarial Networks
gan: Luis Salgueiro Romero, et al.
Cyhoeddwyd: (2020-07-01)