Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice
Abstract Background Inadequate intake of micronutrients with antioxidant properties is common among older adults and has been associated with higher risk of frailty, adverse functional outcome, and impaired muscle health. However, a causal relationship is less well known. The aim was to determine in...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-02-01
|
Series: | Journal of Cachexia, Sarcopenia and Muscle |
Subjects: | |
Online Access: | https://doi.org/10.1002/jcsm.12237 |
_version_ | 1797205126325207040 |
---|---|
author | Miriam vanDijk Francina J. Dijk Anita Hartog Klaske vanNorren Sjors Verlaan Ardy vanHelvoort Richard T. Jaspers Yvette Luiking |
author_facet | Miriam vanDijk Francina J. Dijk Anita Hartog Klaske vanNorren Sjors Verlaan Ardy vanHelvoort Richard T. Jaspers Yvette Luiking |
author_sort | Miriam vanDijk |
collection | DOAJ |
description | Abstract Background Inadequate intake of micronutrients with antioxidant properties is common among older adults and has been associated with higher risk of frailty, adverse functional outcome, and impaired muscle health. However, a causal relationship is less well known. The aim was to determine in old mice the impact of reduced dietary intake of vitamins A/E/B6/B12/folate, selenium, and zinc on muscle mass, oxidative capacity, strength, and physical activity (PA) over time. Methods Twenty‐one‐month‐old male mice were fed either AIN‐93‐M (control) or a diet low in micronutrients with antioxidant properties (=LOWOX‐B: 50% of mouse recommended daily intake of vitamins A, E, B6, and B12, folate, selenium, and zinc) for 4 months. Muscle mass, grip strength, physical activity (PA), and general oxidative status were assessed. Moreover, muscle fatigue was measured of m. extensor digitorum longus (EDL) during an ex vivo moderate exercise protocol. Effects on oxidative capacity [succinate dehydrogenase (SDH) activity], muscle fibre type, number, and fibre cross‐sectional area (fCSA) were assessed on m. plantaris (PL) using histochemistry. Results After 2 months on the diet, bodyweight of LOWOX‐B mice was lower compared with control (P < 0.0001), mainly due to lower fat mass (P < 0.0001), without significant differences in food intake. After 4 months, oxidative status of LOWOX‐B mice was lower, demonstrated by decreased vitamin E plasma levels (P < 0.05) and increased liver malondialdehyde levels (P = 0.018). PA was lower in LOWOX‐B mice (P < 0.001 vs. control). Muscle mass was not affected, although PL‐fCSA was decreased (~16%; P = 0.028 vs. control). SDH activity and muscle fibre type distribution remained unaffected. In LOWOX‐B mice, EDL force production was decreased by 49.7% at lower stimulation frequencies (P = 0.038), and fatigue resistance was diminished (P = 0.023) compared with control. Conclusions Reduced dietary intake of vitamins A, E, B6, and B12, folate, selenium, and zinc resulted in a lower oxidative capacity and has major impact on muscle health as shown by decreased force production and PA, without effects on muscle mass. The reduced fCSA in combination with similar SDH activity per fibre might explain the reduced oxidative capacity resulting in the increased fatigue after exercise in LOWOX‐B mice. |
first_indexed | 2024-04-24T08:46:10Z |
format | Article |
id | doaj.art-2aca1ec981fc48d2a88c256bb2dcc68b |
institution | Directory Open Access Journal |
issn | 2190-5991 2190-6009 |
language | English |
last_indexed | 2024-04-24T08:46:10Z |
publishDate | 2018-02-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Cachexia, Sarcopenia and Muscle |
spelling | doaj.art-2aca1ec981fc48d2a88c256bb2dcc68b2024-04-16T13:33:23ZengWileyJournal of Cachexia, Sarcopenia and Muscle2190-59912190-60092018-02-019114615910.1002/jcsm.12237Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged miceMiriam vanDijk0Francina J. Dijk1Anita Hartog2Klaske vanNorren3Sjors Verlaan4Ardy vanHelvoort5Richard T. Jaspers6Yvette Luiking7Nutricia Research, Nutricia Advanced Medical Nutrition Uppsalalaan 12 3584 CT Utrecht the NetherlandsNutricia Research, Nutricia Advanced Medical Nutrition Uppsalalaan 12 3584 CT Utrecht the NetherlandsNutricia Research Uppsalalaan 12 3584 CT Utrecht the NetherlandsNutrition and Pharmacology Wageningen University Stippeneng 4 6708 WE Wageningen the NetherlandsNutricia Research, Nutricia Advanced Medical Nutrition Uppsalalaan 12 3584 CT Utrecht the NetherlandsNutricia Research, Nutricia Advanced Medical Nutrition Uppsalalaan 12 3584 CT Utrecht the NetherlandsLaboratory for Myology, MOVE Research Institute Amsterdam Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam the NetherlandsNutricia Research, Nutricia Advanced Medical Nutrition Uppsalalaan 12 3584 CT Utrecht the NetherlandsAbstract Background Inadequate intake of micronutrients with antioxidant properties is common among older adults and has been associated with higher risk of frailty, adverse functional outcome, and impaired muscle health. However, a causal relationship is less well known. The aim was to determine in old mice the impact of reduced dietary intake of vitamins A/E/B6/B12/folate, selenium, and zinc on muscle mass, oxidative capacity, strength, and physical activity (PA) over time. Methods Twenty‐one‐month‐old male mice were fed either AIN‐93‐M (control) or a diet low in micronutrients with antioxidant properties (=LOWOX‐B: 50% of mouse recommended daily intake of vitamins A, E, B6, and B12, folate, selenium, and zinc) for 4 months. Muscle mass, grip strength, physical activity (PA), and general oxidative status were assessed. Moreover, muscle fatigue was measured of m. extensor digitorum longus (EDL) during an ex vivo moderate exercise protocol. Effects on oxidative capacity [succinate dehydrogenase (SDH) activity], muscle fibre type, number, and fibre cross‐sectional area (fCSA) were assessed on m. plantaris (PL) using histochemistry. Results After 2 months on the diet, bodyweight of LOWOX‐B mice was lower compared with control (P < 0.0001), mainly due to lower fat mass (P < 0.0001), without significant differences in food intake. After 4 months, oxidative status of LOWOX‐B mice was lower, demonstrated by decreased vitamin E plasma levels (P < 0.05) and increased liver malondialdehyde levels (P = 0.018). PA was lower in LOWOX‐B mice (P < 0.001 vs. control). Muscle mass was not affected, although PL‐fCSA was decreased (~16%; P = 0.028 vs. control). SDH activity and muscle fibre type distribution remained unaffected. In LOWOX‐B mice, EDL force production was decreased by 49.7% at lower stimulation frequencies (P = 0.038), and fatigue resistance was diminished (P = 0.023) compared with control. Conclusions Reduced dietary intake of vitamins A, E, B6, and B12, folate, selenium, and zinc resulted in a lower oxidative capacity and has major impact on muscle health as shown by decreased force production and PA, without effects on muscle mass. The reduced fCSA in combination with similar SDH activity per fibre might explain the reduced oxidative capacity resulting in the increased fatigue after exercise in LOWOX‐B mice.https://doi.org/10.1002/jcsm.12237NutritionAntioxidantsMuscle qualityFunctionStrength |
spellingShingle | Miriam vanDijk Francina J. Dijk Anita Hartog Klaske vanNorren Sjors Verlaan Ardy vanHelvoort Richard T. Jaspers Yvette Luiking Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice Journal of Cachexia, Sarcopenia and Muscle Nutrition Antioxidants Muscle quality Function Strength |
title | Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice |
title_full | Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice |
title_fullStr | Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice |
title_full_unstemmed | Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice |
title_short | Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice |
title_sort | reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice |
topic | Nutrition Antioxidants Muscle quality Function Strength |
url | https://doi.org/10.1002/jcsm.12237 |
work_keys_str_mv | AT miriamvandijk reduceddietaryintakeofmicronutrientswithantioxidantpropertiesnegativelyimpactsmusclehealthinagedmice AT francinajdijk reduceddietaryintakeofmicronutrientswithantioxidantpropertiesnegativelyimpactsmusclehealthinagedmice AT anitahartog reduceddietaryintakeofmicronutrientswithantioxidantpropertiesnegativelyimpactsmusclehealthinagedmice AT klaskevannorren reduceddietaryintakeofmicronutrientswithantioxidantpropertiesnegativelyimpactsmusclehealthinagedmice AT sjorsverlaan reduceddietaryintakeofmicronutrientswithantioxidantpropertiesnegativelyimpactsmusclehealthinagedmice AT ardyvanhelvoort reduceddietaryintakeofmicronutrientswithantioxidantpropertiesnegativelyimpactsmusclehealthinagedmice AT richardtjaspers reduceddietaryintakeofmicronutrientswithantioxidantpropertiesnegativelyimpactsmusclehealthinagedmice AT yvetteluiking reduceddietaryintakeofmicronutrientswithantioxidantpropertiesnegativelyimpactsmusclehealthinagedmice |