On Error-Related Potentials During Sensorimotor-Based Brain-Computer Interface: Explorations With a Pseudo-Online Brain-Controlled Speller

Objective: Brain-computer interface (BCI) spelling is a promising communication solution for people in paralysis. Currently, BCIs suffer from imperfect decoding accuracy which calls for methods to handle spelling mistakes. Detecting error-related potentials (ErrPs) has been early identified as a pot...

Full description

Bibliographic Details
Main Authors: Michele Bevilacqua, Serafeim Perdikis, Jose del R. Millan
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Open Journal of Engineering in Medicine and Biology
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8945325/
Description
Summary:Objective: Brain-computer interface (BCI) spelling is a promising communication solution for people in paralysis. Currently, BCIs suffer from imperfect decoding accuracy which calls for methods to handle spelling mistakes. Detecting error-related potentials (ErrPs) has been early identified as a potential remedy. Nevertheless, few works have studied the elicitation of ErrPs during engagement with other BCI tasks, especially when BCI feedback is provided continuously. Methods: Here, we test the possibility of correcting errors during pseudo-online Motor Imagery (MI) BCI spelling through ErrPs, and investigate whether BCI feedback hinders their generation. Ten subjects performed a series of MI spelling tasks with and without observing BCI feedback. Results: The average pseudo-online ErrP detection accuracy was found to be significantly above the chance level in both conditions and did not significantly differ between the two (74% with, and 78% without feedback). Conclusions: Our results support the possibility to detect ErrPs during MI-BCI spelling and suggest the absence of any BCI feedback-related interference.
ISSN:2644-1276