Rainbow Connection In Sparse Graphs

An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this pap...

Full description

Bibliographic Details
Main Authors: Kemnitz Arnfried, Przybyło Jakub, Schiermeyer Ingo, Woźniak Mariusz
Format: Article
Language:English
Published: University of Zielona Góra 2013-03-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1640
_version_ 1797713131277910016
author Kemnitz Arnfried
Przybyło Jakub
Schiermeyer Ingo
Woźniak Mariusz
author_facet Kemnitz Arnfried
Przybyło Jakub
Schiermeyer Ingo
Woźniak Mariusz
author_sort Kemnitz Arnfried
collection DOAJ
description An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.
first_indexed 2024-03-12T07:32:27Z
format Article
id doaj.art-2ae0a44c6dd64419bae4ab99ea9e8440
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T07:32:27Z
publishDate 2013-03-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-2ae0a44c6dd64419bae4ab99ea9e84402023-09-02T21:43:05ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922013-03-0133118119210.7151/dmgt.1640Rainbow Connection In Sparse GraphsKemnitz Arnfried0Przybyło Jakub1Schiermeyer Ingo2Woźniak Mariusz3Computational Mathematics, Technische Universit¨at Braunschweig 38 023 Braunschweig, GermanyAGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Krakow, PolandInstitut f¨ur Diskrete Mathematik und Algebra Technische Universit¨at Bergakademie Freiberg 09 596 Freiberg, GermanyAGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Krakow, PolandAn edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.https://doi.org/10.7151/dmgt.1640rainbow-connected graphrainbow colouringrainbow connection number
spellingShingle Kemnitz Arnfried
Przybyło Jakub
Schiermeyer Ingo
Woźniak Mariusz
Rainbow Connection In Sparse Graphs
Discussiones Mathematicae Graph Theory
rainbow-connected graph
rainbow colouring
rainbow connection number
title Rainbow Connection In Sparse Graphs
title_full Rainbow Connection In Sparse Graphs
title_fullStr Rainbow Connection In Sparse Graphs
title_full_unstemmed Rainbow Connection In Sparse Graphs
title_short Rainbow Connection In Sparse Graphs
title_sort rainbow connection in sparse graphs
topic rainbow-connected graph
rainbow colouring
rainbow connection number
url https://doi.org/10.7151/dmgt.1640
work_keys_str_mv AT kemnitzarnfried rainbowconnectioninsparsegraphs
AT przybyłojakub rainbowconnectioninsparsegraphs
AT schiermeyeringo rainbowconnectioninsparsegraphs
AT wozniakmariusz rainbowconnectioninsparsegraphs