A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation

In the present work, we investigate the efficiency of a numerical scheme to solve a nonlinear time-fractional heat equation with sufficiently smooth solutions, which was previously reported in the literature [Fract. Calc. Appl. Anal. <b>16</b>: 892–910 (2013)]. In that article, the autho...

Full description

Bibliographic Details
Main Authors: Ahmed S. Hendy, Jorge E. Macías-Díaz
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/9/1539
_version_ 1797554190934867968
author Ahmed S. Hendy
Jorge E. Macías-Díaz
author_facet Ahmed S. Hendy
Jorge E. Macías-Díaz
author_sort Ahmed S. Hendy
collection DOAJ
description In the present work, we investigate the efficiency of a numerical scheme to solve a nonlinear time-fractional heat equation with sufficiently smooth solutions, which was previously reported in the literature [Fract. Calc. Appl. Anal. <b>16</b>: 892–910 (2013)]. In that article, the authors established the stability and consistency of the discrete model using arguments from Fourier analysis. As opposed to that work, in the present work, we use the method of energy inequalities to show that the scheme is stable and converges to the exact solution with order <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>τ</mi><mrow><mn>2</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>+</mo><msup><mi>h</mi><mn>4</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, in the case that <inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> satisfies <inline-formula><math display="inline"><semantics><mrow><msup><mn>3</mn><mi>α</mi></msup><mo>≥</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, which means that <inline-formula><math display="inline"><semantics><mrow><mn>0.369</mn><mo>⪅</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The novelty of the present work lies in the derivation of suitable energy estimates, and a discrete fractional Grönwall inequality, which is consistent with the discrete approximation of the Caputo fractional derivative of order <inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> used for that scheme at <inline-formula><math display="inline"><semantics><msub><mi>t</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula>.
first_indexed 2024-03-10T16:28:24Z
format Article
id doaj.art-2ae58b3d7271446ba40b227b32129a8f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T16:28:24Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-2ae58b3d7271446ba40b227b32129a8f2023-11-20T13:02:45ZengMDPI AGMathematics2227-73902020-09-0189153910.3390/math8091539A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat EquationAhmed S. Hendy0Jorge E. Macías-Díaz1Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, RussiaDepartment of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, EstoniaIn the present work, we investigate the efficiency of a numerical scheme to solve a nonlinear time-fractional heat equation with sufficiently smooth solutions, which was previously reported in the literature [Fract. Calc. Appl. Anal. <b>16</b>: 892–910 (2013)]. In that article, the authors established the stability and consistency of the discrete model using arguments from Fourier analysis. As opposed to that work, in the present work, we use the method of energy inequalities to show that the scheme is stable and converges to the exact solution with order <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>τ</mi><mrow><mn>2</mn><mo>−</mo><mi>α</mi></mrow></msup><mo>+</mo><msup><mi>h</mi><mn>4</mn></msup><mo>)</mo></mrow></semantics></math></inline-formula>, in the case that <inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> satisfies <inline-formula><math display="inline"><semantics><mrow><msup><mn>3</mn><mi>α</mi></msup><mo>≥</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, which means that <inline-formula><math display="inline"><semantics><mrow><mn>0.369</mn><mo>⪅</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The novelty of the present work lies in the derivation of suitable energy estimates, and a discrete fractional Grönwall inequality, which is consistent with the discrete approximation of the Caputo fractional derivative of order <inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula> used for that scheme at <inline-formula><math display="inline"><semantics><msub><mi>t</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/8/9/1539nonlinear fractional heat equationdiscrete energy estimatesdiscrete fractional Grönwall inequalityconvergence and stability analyses
spellingShingle Ahmed S. Hendy
Jorge E. Macías-Díaz
A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation
Mathematics
nonlinear fractional heat equation
discrete energy estimates
discrete fractional Grönwall inequality
convergence and stability analyses
title A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation
title_full A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation
title_fullStr A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation
title_full_unstemmed A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation
title_short A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation
title_sort discrete gronwall inequality and energy estimates in the analysis of a discrete model for a nonlinear time fractional heat equation
topic nonlinear fractional heat equation
discrete energy estimates
discrete fractional Grönwall inequality
convergence and stability analyses
url https://www.mdpi.com/2227-7390/8/9/1539
work_keys_str_mv AT ahmedshendy adiscretegronwallinequalityandenergyestimatesintheanalysisofadiscretemodelforanonlineartimefractionalheatequation
AT jorgeemaciasdiaz adiscretegronwallinequalityandenergyestimatesintheanalysisofadiscretemodelforanonlineartimefractionalheatequation
AT ahmedshendy discretegronwallinequalityandenergyestimatesintheanalysisofadiscretemodelforanonlineartimefractionalheatequation
AT jorgeemaciasdiaz discretegronwallinequalityandenergyestimatesintheanalysisofadiscretemodelforanonlineartimefractionalheatequation