Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rear‐Arc

Abstract Submarine caldera volcanoes may host several hydrothermal systems along the caldera wall and related to volcanic cones. Fluid boiling and magmatic volatile influx are common processes in shallow (<2,000 mbsl) subduction zone‐related environments causing variations in the mineralogical an...

Full description

Bibliographic Details
Main Authors: Jan J. Falkenberg, Manuel Keith, Karsten M. Haase, Christian Sporer, Wolfgang Bach, Reiner Klemd, Harald Strauss, Bettina Storch, Christian Peters, Kenneth H. Rubin, Melissa O. Anderson
Format: Article
Language:English
Published: Wiley 2022-04-01
Series:Geochemistry, Geophysics, Geosystems
Subjects:
Online Access:https://doi.org/10.1029/2021GC010259
_version_ 1797637994042097664
author Jan J. Falkenberg
Manuel Keith
Karsten M. Haase
Christian Sporer
Wolfgang Bach
Reiner Klemd
Harald Strauss
Bettina Storch
Christian Peters
Kenneth H. Rubin
Melissa O. Anderson
author_facet Jan J. Falkenberg
Manuel Keith
Karsten M. Haase
Christian Sporer
Wolfgang Bach
Reiner Klemd
Harald Strauss
Bettina Storch
Christian Peters
Kenneth H. Rubin
Melissa O. Anderson
author_sort Jan J. Falkenberg
collection DOAJ
description Abstract Submarine caldera volcanoes may host several hydrothermal systems along the caldera wall and related to volcanic cones. Fluid boiling and magmatic volatile influx are common processes in shallow (<2,000 mbsl) subduction zone‐related environments causing variations in the mineralogical and chemical composition of seafloor hydrothermal mineralizations that remain poorly constrained. The submarine caldera of Niuatahi volcano, Tonga rear‐arc, hosts four active vent sites discharging high temperature fluids (<334°C) with variable salinities (369–583 mM Cl) that are indicative of fluid boiling, recorded by distinct Te/As and Te/Au in pyrite, sphalerite, and chalcopyrite. High sulfidation mineral assemblages (e.g., enargite), stable S isotope data and similar trace element signatures in sulfides and native S condensates suggest a minor and/or infrequent contribution of magmatic SO2 to the hydrothermal systems located proximal to the caldera center causing a volatile element (e.g., Se, Bi, Te) enrichment. The hydrothermal system at the northern caldera wall is decoupled from the magmatic SO2 source, as revealed by radiogenic Pb isotopes. Instead, S isotope and trace element constraints propose a host rock‐dominated hydrothermal system, lacking a magmatic volatile influx. The observed hydrothermal fractionation processes (fluid boiling) and the distinct metal (loid) sources (magmatic volatiles vs. host rock) represent a continuum from magmatic volatile‐ to host rock‐dominated hydrothermal systems within the Niuatahi caldera. This leads to seafloor mineralizations with spatially selective trace element enrichments, like Te, Se, and Bi (±Au, Ag) in the caldera center compared to Au, Ag, Zn, Cd, and Pb at the northern caldera wall.
first_indexed 2024-03-11T12:57:17Z
format Article
id doaj.art-2af66d20be6e47869c71d8abb5827965
institution Directory Open Access Journal
issn 1525-2027
language English
last_indexed 2024-03-11T12:57:17Z
publishDate 2022-04-01
publisher Wiley
record_format Article
series Geochemistry, Geophysics, Geosystems
spelling doaj.art-2af66d20be6e47869c71d8abb58279652023-11-03T16:56:16ZengWileyGeochemistry, Geophysics, Geosystems1525-20272022-04-01234n/an/a10.1029/2021GC010259Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rear‐ArcJan J. Falkenberg0Manuel Keith1Karsten M. Haase2Christian Sporer3Wolfgang Bach4Reiner Klemd5Harald Strauss6Bettina Storch7Christian Peters8Kenneth H. Rubin9Melissa O. Anderson10GeoZentrum Nordbayern Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg Erlangen GermanyGeoZentrum Nordbayern Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg Erlangen GermanyGeoZentrum Nordbayern Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg Erlangen GermanyGeoZentrum Nordbayern Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg Erlangen GermanyMARUM—Center for Marine Environmental Sciences, Faculty of Geoscience, University of Bremen Bremen GermanyGeoZentrum Nordbayern Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg Erlangen GermanyInstitut für Geologie und Paläontologie Westfälische‐Wilhelms‐Universität Münster Münster GermanyGeoZentrum Nordbayern Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg Erlangen GermanyInstitut für Geologie und Paläontologie Westfälische‐Wilhelms‐Universität Münster Münster GermanyDepartment of Earth Sciences University of Hawaiʻi at Mānoa Honolulu HI USADepartment of Earth Sciences University of Toronto Toronto ON CanadaAbstract Submarine caldera volcanoes may host several hydrothermal systems along the caldera wall and related to volcanic cones. Fluid boiling and magmatic volatile influx are common processes in shallow (<2,000 mbsl) subduction zone‐related environments causing variations in the mineralogical and chemical composition of seafloor hydrothermal mineralizations that remain poorly constrained. The submarine caldera of Niuatahi volcano, Tonga rear‐arc, hosts four active vent sites discharging high temperature fluids (<334°C) with variable salinities (369–583 mM Cl) that are indicative of fluid boiling, recorded by distinct Te/As and Te/Au in pyrite, sphalerite, and chalcopyrite. High sulfidation mineral assemblages (e.g., enargite), stable S isotope data and similar trace element signatures in sulfides and native S condensates suggest a minor and/or infrequent contribution of magmatic SO2 to the hydrothermal systems located proximal to the caldera center causing a volatile element (e.g., Se, Bi, Te) enrichment. The hydrothermal system at the northern caldera wall is decoupled from the magmatic SO2 source, as revealed by radiogenic Pb isotopes. Instead, S isotope and trace element constraints propose a host rock‐dominated hydrothermal system, lacking a magmatic volatile influx. The observed hydrothermal fractionation processes (fluid boiling) and the distinct metal (loid) sources (magmatic volatiles vs. host rock) represent a continuum from magmatic volatile‐ to host rock‐dominated hydrothermal systems within the Niuatahi caldera. This leads to seafloor mineralizations with spatially selective trace element enrichments, like Te, Se, and Bi (±Au, Ag) in the caldera center compared to Au, Ag, Zn, Cd, and Pb at the northern caldera wall.https://doi.org/10.1029/2021GC010259Niuatahi volcanoS and Pb isotopesLA‐ICP‐MSin situ trace elementspyritechalcopyrite
spellingShingle Jan J. Falkenberg
Manuel Keith
Karsten M. Haase
Christian Sporer
Wolfgang Bach
Reiner Klemd
Harald Strauss
Bettina Storch
Christian Peters
Kenneth H. Rubin
Melissa O. Anderson
Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rear‐Arc
Geochemistry, Geophysics, Geosystems
Niuatahi volcano
S and Pb isotopes
LA‐ICP‐MS
in situ trace elements
pyrite
chalcopyrite
title Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rear‐Arc
title_full Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rear‐Arc
title_fullStr Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rear‐Arc
title_full_unstemmed Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rear‐Arc
title_short Spatial Variations in Magmatic Volatile Influx and Fluid Boiling in the Submarine Hydrothermal Systems of Niuatahi Caldera, Tonga Rear‐Arc
title_sort spatial variations in magmatic volatile influx and fluid boiling in the submarine hydrothermal systems of niuatahi caldera tonga rear arc
topic Niuatahi volcano
S and Pb isotopes
LA‐ICP‐MS
in situ trace elements
pyrite
chalcopyrite
url https://doi.org/10.1029/2021GC010259
work_keys_str_mv AT janjfalkenberg spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT manuelkeith spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT karstenmhaase spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT christiansporer spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT wolfgangbach spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT reinerklemd spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT haraldstrauss spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT bettinastorch spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT christianpeters spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT kennethhrubin spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc
AT melissaoanderson spatialvariationsinmagmaticvolatileinfluxandfluidboilinginthesubmarinehydrothermalsystemsofniuatahicalderatongareararc