On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1,1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m,n} \right]\kern-0.15em\right]$
Let $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-11-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2021066/fulltext.html |