Properties of the coefficient estimators for the linear regression model with heteroskedastic error term

In this paper we present estimated generalized least squares (EGLS) estimator for the coefficient vector β in the linear regression model y = βX + ε, where disturbance term can be heteroskedastic. For the heteroskedasticity of the changed segment type, using Monte-Carlo method, we investigate empir...

Full description

Bibliographic Details
Main Authors: Alfredas Račkauskas, Danas Zuokas
Format: Article
Language:English
Published: Vilnius University Press 2023-09-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.zurnalai.vu.lt/LMR/article/view/30725
Description
Summary:In this paper we present estimated generalized least squares (EGLS) estimator for the coefficient vector β in the linear regression model y = βX + ε, where disturbance term can be heteroskedastic. For the heteroskedasticity of the changed segment type, using Monte-Carlo method, we investigate empirical properties of the proposed and ordinary least squares (OLS) estimators. The results show that the empirical covariance of the EGLS estimators is smaller than that of OLS estimators.
ISSN:0132-2818
2335-898X