Properties of the coefficient estimators for the linear regression model with heteroskedastic error term

In this paper we present estimated generalized least squares (EGLS) estimator for the coefficient vector β in the linear regression model y = βX + ε, where disturbance term can be heteroskedastic. For the heteroskedasticity of the changed segment type, using Monte-Carlo method, we investigate empir...

Full description

Bibliographic Details
Main Authors: Alfredas Račkauskas, Danas Zuokas
Format: Article
Language:English
Published: Vilnius University Press 2023-09-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.zurnalai.vu.lt/LMR/article/view/30725
_version_ 1797198418139938816
author Alfredas Račkauskas
Danas Zuokas
author_facet Alfredas Račkauskas
Danas Zuokas
author_sort Alfredas Račkauskas
collection DOAJ
description In this paper we present estimated generalized least squares (EGLS) estimator for the coefficient vector β in the linear regression model y = βX + ε, where disturbance term can be heteroskedastic. For the heteroskedasticity of the changed segment type, using Monte-Carlo method, we investigate empirical properties of the proposed and ordinary least squares (OLS) estimators. The results show that the empirical covariance of the EGLS estimators is smaller than that of OLS estimators.
first_indexed 2024-03-07T14:22:06Z
format Article
id doaj.art-2afe0469faf245e99bff05db9a429e02
institution Directory Open Access Journal
issn 0132-2818
2335-898X
language English
last_indexed 2024-04-24T06:59:32Z
publishDate 2023-09-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj.art-2afe0469faf245e99bff05db9a429e022024-04-22T09:00:48ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2023-09-0146spec.10.15388/LMR.2006.30725Properties of the coefficient estimators for the linear regression model with heteroskedastic error termAlfredas Račkauskas0Danas Zuokas1Vilnius UniversityVilnius University In this paper we present estimated generalized least squares (EGLS) estimator for the coefficient vector β in the linear regression model y = βX + ε, where disturbance term can be heteroskedastic. For the heteroskedasticity of the changed segment type, using Monte-Carlo method, we investigate empirical properties of the proposed and ordinary least squares (OLS) estimators. The results show that the empirical covariance of the EGLS estimators is smaller than that of OLS estimators. https://www.zurnalai.vu.lt/LMR/article/view/30725heteroskedasticitychanged segmentHölder norm tests
spellingShingle Alfredas Račkauskas
Danas Zuokas
Properties of the coefficient estimators for the linear regression model with heteroskedastic error term
Lietuvos Matematikos Rinkinys
heteroskedasticity
changed segment
Hölder norm tests
title Properties of the coefficient estimators for the linear regression model with heteroskedastic error term
title_full Properties of the coefficient estimators for the linear regression model with heteroskedastic error term
title_fullStr Properties of the coefficient estimators for the linear regression model with heteroskedastic error term
title_full_unstemmed Properties of the coefficient estimators for the linear regression model with heteroskedastic error term
title_short Properties of the coefficient estimators for the linear regression model with heteroskedastic error term
title_sort properties of the coefficient estimators for the linear regression model with heteroskedastic error term
topic heteroskedasticity
changed segment
Hölder norm tests
url https://www.zurnalai.vu.lt/LMR/article/view/30725
work_keys_str_mv AT alfredasrackauskas propertiesofthecoefficientestimatorsforthelinearregressionmodelwithheteroskedasticerrorterm
AT danaszuokas propertiesofthecoefficientestimatorsforthelinearregressionmodelwithheteroskedasticerrorterm