Summary: | The beneficial effect of social interaction in mitigating the incidence of post-stroke depression (PSD) and ameliorating depressive symptoms has been consistently demonstrated through preclinical and clinical studies. However, the underlying relationship with oxytocin requires further investigation. In light of this, the present study aimed to explore the protective effect of pair housing on the development of PSD and the potential relationship with oxytocin receptors. The PSD model was induced by middle cerebral artery occlusion (MCAO) for 50 min, followed by 4-week isolated housing and restrained stress. Subsequently, each mouse in the pair-housing group (PH) was pair-housed with an isosexual healthy partner. Another group was continuously administrated fluoxetine (10 mg/Kg, i.p, once a day) for 3 weeks. To elucidate the potential role of oxytocin, we subjected pair-housed PSD mice to treatment with an oxytocin receptor (OXTR) antagonist (L368,889) (5 mg/Kg, i.p, once a day) for 3 weeks. At 31 to 32 days after MCAO, anxiety- and depressive-like behaviors were assessed using sucrose consumption, forced swim test, and tail-suspension test. The results showed that pair housing significantly improved post-stroke depression to an extent comparable to that of fluoxetine treatment. Furthermore, pair housing significantly decreased corticosterone in serum, increasing OXT mRNA expression in the hypothalamus. Treatment with L368,889 essentially reversed the effect of pair housing, with no discernible sex differences apart from changes in body weight. Pair housing increased hippocampal serotonin (5-HT), but treatment with L368,889 had no significant impact. Additionally, pair housing effectively reduced the number of reactive astrocytes and increased Nissl's body in the cortex and hippocampal CA3 regions. Correspondingly, treatment with L368,889 significantly reversed the changes in the Nissl's body and reactive astrocytes. Moreover, pair housing downregulated mRNA levels of TNF-α, IL-1β, and IL-6 in the cortex caused by PSD, which was also reversed by treatment with L368,889. In conclusion, pair housing protects against the development of PSD depending on OXT and OXTR in the brain, with no significant divergence based on sex. These findings provide valuable insights into the potential of social interaction and oxytocin as therapeutic targets for PSD. Further research into the underlying mechanisms of these effects may contribute to the development of novel treatments for PSD.
|