Seasonality in Spatial Turnover of Bacterioplankton Along an Ecological Gradient in the East China Sea: Biogeographic Patterns, Processes and Drivers

Seasonal succession in bacterioplankton is a common process in marine waters. However, seasonality in their spatial turnover is largely unknown. Here, we investigated spatial turnover of surface bacterioplankton along a nearshore-to-offshore gradient in the East China Sea across four seasons. Althou...

Full description

Bibliographic Details
Main Authors: Hanjing Hu, Jiaying He, Huizhen Yan, Dandi Hou, Demin Zhang, Lian Liu, Kai Wang
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/8/10/1484
Description
Summary:Seasonal succession in bacterioplankton is a common process in marine waters. However, seasonality in their spatial turnover is largely unknown. Here, we investigated spatial turnover of surface bacterioplankton along a nearshore-to-offshore gradient in the East China Sea across four seasons. Although seasonality overwhelmed spatial variability of bacterioplankton composition, we found significant spatial turnover of bacterioplankton along the gradient as well as overall seasonal consistency in biogeographic patterns (including distance–decay relationship and covariation of community composition with distance to shore) with subtle changes. Bacterioplankton assembly was consistently dominated by deterministic mechanisms across seasons, with changes in specific processes. We found overall seasonal consistency in abiotic factors (mainly salinity and nitrogen and phosphorus nutrients) shaping bacterioplankton composition, while phytoplankton showed a similar influence as abiotic factors only in spring. Although key taxa responsible for bacterioplankton spatial turnover showed certain season-specificity, seasonal switching between closely related taxa occurred within most dominant families. Moreover, many close relatives showed different responding patterns to the environmental gradients in different seasons, suggesting their differences in both seasonally climatic and spatially environmental preferences. Our results provide insights into seasonal consistency and variability in spatial turnover of bacterioplankton in terms of biogeographic patterns, ecological processes, and external and internal drivers.
ISSN:2076-2607