Summary: | Metalenses provide a powerful paradigm for mid-infrared (MIR) imaging and detection while keeping the optical system compact. However, the design of MIR metalenses simultaneously correcting chromatic aberration and off-axis monochromatic aberration remains challenging. Here, we propose an MIR doublet metalens composed of a silicon aperture metalens and a silicon focusing metalens separated by a fused silica substrate. By performing ray-tracing optimization and particle-swarm optimization, we optimized the required phase profiles as well as the sizes and spatial distributions of silicon nanopillars of the doublet metalens. Simulation results showed that the MIR doublet metalens simultaneously achieved chromatic and off-axis monochromatic aberration reduction, realizing a continuous 400 nm bandwidth and 20° field-of-view (FOV). Thanks to its planar configuration, this metalens is suitable for integration with CMOS image sensor to achieve MIR imaging and detection, which has potential application in troubleshooting and intelligent inspection of power grids. This work may facilitate the practical application of metalens-integrated micro/nanosensors in intelligent energy.
|