Impact of combined exercise training on the development of cardiometabolic and neuroimmune complications induced by fructose consumption in hypertensive rats.

This study evaluated the impact of combined exercise training on the development of cardiovascular and neuroimmune complications induced by fructose consumption (10% in the drinking water) in hypertensive rats (SHR). After weaning, SHR were divided into 3 groups: SHR (H), SHR+fructose (HF) and SHR+f...

Full description

Bibliographic Details
Main Authors: Danielle da Silva Dias, Nathalia Bernardes, Filipe Fernandes Stoyell-Conti, Camila Paixão Dos Santos, Amanda Aparecida de Araujo, Susana Llesuy, Maria Cláudia Irigoyen, Kátia De Angelis
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0233785
Description
Summary:This study evaluated the impact of combined exercise training on the development of cardiovascular and neuroimmune complications induced by fructose consumption (10% in the drinking water) in hypertensive rats (SHR). After weaning, SHR were divided into 3 groups: SHR (H), SHR+fructose (HF) and SHR+fructose+combined exercise training (treadmill+ladder, 40-60% of maximum capacity) (HFTC). Metabolic, hemodynamic, autonomic, inflammatory and oxidative stress parameters were evaluated in the subgroups (n = 6 group/time) at 7, 15, 30 and 60 days of protocol. Fructose consumption (H vs. HF groups) decreased spontaneous baroreflex sensitivity and total variance of pulse interval at day 7 (7 to 60); increased IL-6 and TNFα in the heart (at day 15, 30 and 60) and NADPH oxidase activity and cardiac lipoperoxidation (LPO) (day 60); increased white adipose tissue weight, reduced insulin sensitivity and increased triglycerides (day 60); induced an additional increase in mean arterial pressure (MAP) (days 30 and 60). Combined exercise training prevented such dysfunctions and sustained increased cardiac IL-10 (day 7) and glutathione redox balance (GSH/GSSG) for the entire protocol. In conclusion, combined exercise training performed simultaneously with exacerbated fructose consumption prevented early cardiovascular autonomic dysfunction, probably trigging positive changes in inflammation and oxidative stress, resulting in a better cardiometabolic profile in rats genetically predisposed to hypertension.
ISSN:1932-6203